New Perspectives on Spoken Language Understanding (SLU)

> Tatsuya Kawahara (Kyoto Univ., Japan)

New Perspectives of SLU

- Target of SDS (Spoken Dialog System)
 - simple database query
 - Relational-structured data (ex.) flight, train
 - general information retrieval (IR/search)
 - Semantic slots cannot be well defined!!
- Target of ASR
 - Human-machine interface
 - Human-human communication
 - SLU is not limited to concept extraction

Overview of the Talk

- SLU for new-generation SDS
 - IR (Information Retrieval)
 - QA (Question-Answering)
- SLU for human-human speech communication
 - Rich transcription
 - Hot-spot detection

SLU with IR for Human-Machine Dialog

Conventional SLU
From RDB to IR
Interactive IR
Interaction using QA

Conventional SLU

Acoustic Model Language Model

```
Concept Model := semantic slots
(ex.) [destination, "Milan"]
[arrival_date "12_12_2009"]
```

Dialog Management

- Not filled \rightarrow ask question
- Not confident → confirmation

Evaluation: Concept Error Rate (CER)

Typical Formulation of Conventional SLU

 $\arg \max p(C, W \mid X)$ $= \arg \max p(C) \cdot p(W \mid C) \cdot p(X \mid W)$

- P(C): statistical model of concepts
- P(W|C): language model dependent on concept
- P(X|W): acoustic model

See review by [DeMori:ASRU07] or [Wang:SPSmagazine05] Assumptions of Conventional SLU

- Set of concepts definite, given taskdomain
 - Otherwise, concept model & concept error rate cannot be defined
 - Consistent with back-end DB system
 - Semantic slots \rightarrow SQL query

From RDB Query to IR

- Search target (in general)
 - structural RDB \rightarrow general text
- Task of SDS
 - SQL (slot filling) \rightarrow IR (search)
- Approach
 - symbolic \rightarrow statistical (Vector Space Model)
 - Cannot assume definite semantic slots & dialog states based on the slots

From RDB query To Text Search (IR)

Backend	ASR	SLU	Dialog
Relational Database (RDB) (flight, bus)	Finite State Grammar	Mapping to <mark>SQL</mark>	state-action pair (voice XML)
Text base (KB) (Wikipedia, Web)	SLM (N-gram)	Statistical Matching (VSM)	dynamic clarification & recommendation
	Vector Space Model		

SLU for IR

- When IR assumes some structure
 - (ex.) directory search
 - → noisy-channel model [Wang:SPSmagazine08]
- When search space is too large
 - (ex.) Web, newspaper
 - \rightarrow little room for SLU in addition to VSM
- IR from documents in restricted domain (ex.) software manual, cooking recipe, tourist guide

IR from Knowledge Base (KB) in restricted domain

■ Knowledge Base (KB) → Problem solving

- software manuals → trouble shooting
- cooking recipes \rightarrow cooking assistant
- tourist guide \rightarrow tour planning
- Longer interaction than simple search → novel features in SLU and dialog
- Access to entire document set
 - \rightarrow exploit knowledge for SLU and dialog

Interactive IR from Software Support Manuals [Misu:SPECOM06]

keyboard-less appliances

Example Dialog by Interactive Software Manual Retrieval

Dialog generated on-the-fly without pre-defined flow!

On-the-fly Clarification

 Select from a set of questions to maximize Information Gain (IG)

Expected to eliminate matched docs

$$IG(S) = -\sum_{i=0}^{n} P(i) \cdot \log P(i)$$

$$P(i) = \frac{|C_i|}{\sum_{i=0}^{n} |C_i|}$$

$$|C_i| = \sum_{D_k \in i} CM(D_k)$$

$$Ci: \text{ number of doce by the question } CM(D): \text{ matching set}$$

Ci: number of docs classified to category *i* by the question *S CM(D)*: matching score of doc *D*

Automatic Acquisition of a set of Clarification Questions

- 1. Dependency structure analysis for modifierhead pairs in all documents
- 2. Calculate entropy for head words

Install:

Application program	\rightarrow	20%
Service Pack	\rightarrow	10%
Device driver	\rightarrow	10%
External device	\rightarrow	8%
Client program	\rightarrow	6%

Large entropy → effective "what did you install?"

Shutdown:	
System Computer Server	 → 40% → 50% → 5%

Small entropy → too obvious "what did you shutdown?"

Evaluation

Microsoft software manuals of 40K entries

	success rate	#extra turns
baseline	70.7	
Modifier-head pair	74.5	0.38
Heuristic	74.5	0.97
Meta-data (application, version)	76.1	0.89
Combined	83.3	2.24

From Simple IR to Information Navigation

 IR: search unique answer documents (ex.) Manual entry for specific problem

Speech interface without GUI (Agent/Robot)

Cannot read out documents

→ Summarize

Need to handle pin-point queries

 \rightarrow Question-Answer (QA)

Need to talk with users without definite goals

(ex.) "something interesting", "something tasty"

→ Proactive Recommendation

Tour Guide Agent based on IR+QA Techniques [Misu:SPECOM10]

IR and QA

IR: query → documents
 (ex.) tell me about "Kiyomizu temple".

- QA: wh-question → named entity (NE) (ex.) when was it built?
 (ex.) who built it?
 - IR + NE extraction = SLU

Recommendation in Question form Generated from Key Sentences

[Original text]

By the way, **Queen Elizabeth** praised this stone garden very much, when she once ...

By the way, who praised this stone garden a lot, when she

Who praised this stone garden a lot

Inverse process of QA

[Question]

Do you know who praised this stone garden very much?

Dialog Strategy

Example Dialog in Kyoto Navigator

- U1: Please explain Golden Pavilion.
- S1: Golden Pavilion is one of the buildings in the Rokuon-ji in Kyoto, and is the main attraction of the temple sites. The entire pavilion except the basement floor is covered with a pure gold leaf.
- U2: When was it built?
- S2: Golden Pavilion was originally built in 1397 to serve as a retirement villa for Shogun Ashikaga Yoshimitsu.

..(silence)..

- S3: Well then, do you know what was awarded to this temple in 1994?
- U3: No, please tell me.
- S4: It was awarded as listing on the UNESCO World Heritage in 1994.
- U4: How can I get there?

Dialog generated on-the-fly from Wikipedia documents!

Kyoto Navigator using Wikipedia as backend KB

Gelestioquebout detess

U2: "Rehanderstegieldinge Pavilion."

System-initiative question

- S3: "IVial Social and power in the second se

*System scripts are taken from English version of Wikipedia

Evaluation

- QA
 - Contextual information important
 - ← anaphora resolution
- Recommendation
 - Question-style preferred
 - \leftarrow more likely to be accepted
- Dialog
 - Longer interaction suggests satisfaction with the system
 - ← different criteria from task-oriented SDS

[Summary] SLU for Newgeneration Dialog System

- SLU in interactive IR
 - Vector Space Model (VSM)
 - Query update
- SLU in interactive QA
 - IR + NE extraction
 - Topic/focus detection
- Understanding?
 - Maybe NO in conventional sense
 - Still, important to extract structures such as dependency and discourse

SLU for Human-Human Speech Communication

Rich TranscriptionHot-spot Detection

Rich Transcription (RT)

Enhance transcript of spontaneous speech, which is not readable

- Disfluency detection
- Punctuation insertion
- Machine learning approach
 - A set of features: lexical, prosodic...
 - Classifiers: SVM, CRF..

Speaking-style Transformation (SST)

- Convert faithful transcript into formal document-style
 - Deletion of redundant words
 - Correction (substitution) of colloquial expressions
 - Recovery (insertion) of omitted words
- SMT (Statistical Machine Translation) approach [Neubig: IS2009]
 - Log-linear model
 - WFST decoder

Automatic Transcription System for Japanese Congress [Akita:IS2009]

Deployed in 2010

- Evaluation measure: WER
 - NOT against faithful transcript *V*(as-is)
 - BUT for final proceeding text *W* (should-be)
 - Consistent with system's goal
 - Faithful transcript costly \rightarrow cannot make everyday

Does Understanding help Transcription?

Apparently, YES for humanBut NO for machine (ASR)

Stenographers:

are NOT sure if they "understand" the speech during shorthand transcription, but do NOT "hear" disfluencies.

High-level Annotation

- Dialog Act tagging [Shriberg:SIGDIAL04]
 - Identify intent type of utterances (ex.) request-info, greeting...

Information Extraction [Ramshaw:ICASSP05]

Identify named entities (NE) and their relationships

(ex.) [A sell B] [A acquire C]

New Direction of SLU

Speech Summarization [Furui:SLT2006]

- Extract important portions and generate compact output
- MMR (Maximum Marginal Relevance) [Carbonell:1998]
 - Similarity defined with VSM
 - Extract sentences which best match the entire document and differ each other

SLU with VSM

From Content-based Approach to Interaction-based Approach

- Content-based approach
 - try to understand & annotate content of speech
 - Actually hardly "understand"
- Interaction-based approach
 - give up "understanding" of speaker's utterances
 - look into reaction of listeners/audience, who understand the content
 - More oriented for human cognitive process

From Content-based Approach to Interaction-based Approach

- Even if we do not understand the talk, we can see funny/important parts by observing audience's laughing/nodding
- Page rank is determined by the number of links rather than by the content

From Content-based Approach to Interaction-based Approach

	Focus	Features	Annotation
Content -based	Main speaker's utterances	lexical, prosodic 	Important segment
Interaction -based	Listener's reaction	non-verbal, multi-modal	Impressive segment (interesting)

Multi-modal Corpus of Poster Sessions [Kawahara: IS2008]

- Norm in conferences & open-houses
- Mixture characteristics of lectures [CSJ] and meetings [AMI]
 - One main speaker, with small audience
 - audience can take initiative
- Interactive: real-time feedback by audiences
 - Nodding & backchannels
 - Comments and questions
- Multi-modal (truly)
 - Standing & moving

Multi-modal Sensing Environment

- Wire-less head-worn microphone
- Distant microphone
- Microphone array mounted on poster stand
- 8 cameras installed in the room
- Motion-capturing system
- Accelerometer
- Eye-tracking recorders

Hot-spot Detection based on Listener's Backchannel Response

Hot-spot: where audience was impressed

- Backchannel (aizuchi)
 - Short verbal responses made in real-time (cf.) Twitter
 - often non-lexical

(ex.) "yeah", "uh-huh"...

- indicate "I hear you, understand you..."
- change syllabic & prosodic patterns, according to state of mind

Identification of Backchannel Patterns related with Interest-level

Occurrence frequency patterns

- "*hai* (yes)"
 - frequent when listening to reply to his own question
 - Acknowledgment & courtesy
- Prosodic patterns (F0, power, duration)
 - "he:", "hu:N", "a:"
 - Large variation
 - Large correlation (in some prosodic patterns) with interest-level by subjective evaluation

Identification of Backchannel Patterns related with Interest-level

Reactive token	prosody	interest	surprise
∧−	duration	0	0
he:	F0max	0	0
6	F0range	0	0
V <	Pmax	0	0
あー	duration		
a:	F0max	0	0
4	F0range		
V <	Pmax	0	
ふーん	duration	0	0
fu:N	F0max		
4	F0range		
* **	Pmax		

Acoustic Event Detection [Sumi:IS2009]

- Target of Detection
 - Reactive tokens used in backchannel
 - Laughter
- Method
 - BIC-segmentation & GMM classification
 - Dedicated verifier: prosodic information
- Performance
 - F-measure: 70%
 - Precision of reactive tokens: 85%

Audio Indexing of Hot-spots based on Listener's Reactions

- Detection of reactive tokens & laughterClassification of interest-level
- Browser interface

[Summary] SLU for Humanhuman Communication

- Hard to "understand"
- Content-based approach
 - Feature vectors...lexical, prosodic
 - Information extraction, dialog act tagging
- Interaction-based approach
 - NOT understand main speaker's utterance
 - BUT watch reactions of audience
 - to be combined with content-based approach

Conclusions: New Perspectives of SLU

- Paradigm shift in human-machine dialog
 - Simple DB query \rightarrow general IR
 - Semantic slot extraction → VSM (vector space model)
 - Robust extraction of shallow structures useful
- Exploration to human-human communication
 - Hard to "understand"
 - New approach focusing on human understanding process