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Abstract－Although network content access is primarily 

text-based today, almost all roles of text can be accomplished by 
voice. Voice-based information retrieval refers to the situation 
that the user query and/or the content to be retried are in form 
of voice. This paper tries to compare the voice-based 
information retrieval with the currently very successful 
text-based information retrieval, and identifies two major 
issues in which voice-based information retrieval is far behind: 
retrieval accuracy and user-system interaction. These two 
issues are reviewed, analyzed and discussed in detail. It is found 
that very good approaches have been proposed and very good 
improvements have been achieved, although there is still a very 
long way to go. A few successful prototype systems, among 
many others are presented at the end. 
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I. INTRODUCTION 

With the rapid increase of web content, text-based 
information retrieval has become a very popular technology 
with many successful applications, which in turn generated a 
very successful industry today. However, this is not the end 
of the story, but only the beginning. The ever-increasing 
Internet bandwidth, the ever-decreasing storage costs, and 
the fast development of multimedia technologies have paved 
the road for more and more multimedia network content. 
Multimedia content usually carries speech information, and 
such speech information usually tells the topics and concepts 
relevant to the multimedia content. As a result, speech 
information becomes the key for indexing and retrieving 
such content [1], [2], [3], [4], [5], [6], [7]. In fact, although 
network content access is primarily text-based today, almost 
all roles of texts can be accomplished by voice. Not only the 
speech information can be used to index and retrieve 
multimedia content, but the user instructions and queries can 
also be entered in form of voice. With the many hand-held 
devices with multimedia functionalities commercially 
available and the fast increasing quantities of multimedia 
content over the Internet, this area is apparently getting more 
and more important today. This leads to the concept of 
voice-based information retrieval as shown in Fig. 1. In 
addition to using text instructions/queries to retrieve text 

documents as has been very popular today, either the 
instructions/queries or the content to be retrieved, or both of 
them, can be in spoken form. This actually includes three 
different tasks: (1)using text queries to retrieve spoken 
documents, (2)using spoken queries to retrieve text 
documents, and (3)using spoken queries to retrieve spoken 
documents. 
In this paper we try to offer an overview of the area of 
voice-based information retrieval by comparing it with the 
currently very successful text-based counterpart. The 
discussions are primarily focused on two key issues, the 
retrieval accuracy and the user-system interaction, which are 
identified as the two major areas where much more 
technology advances are still needed, if we wish voice-based 
information retrieval in the future can be as convenient and 
attractive as text-based information retrieval today. We also 
present three successful prototype systems as application 
examples: a broadcast news browser, a course lecture 
browser, and a personal photo browser. 
  Below, after a brief introduction of the three different 
tasks of voiced-based information retrieval and the 
comparison between voice-based and text-based information 
retrieval in sections 2 and 3, the issues of retrieval accuracy 
and user-system interaction are discussed in detail in 
sections 4 and 5 respectively. The application examples are 
finally presented in section 6, and the concluding remarks 
are made in section 7. 
 

 
Fig. 1. Voice-based Information Retrieval: User instructions/queries in 

spoken form and/or documents to be retrieved in spoken form. 

 



II. THREE DIFFERENT TASKS OF VOICE-BASED 

INFORMATION RETRIEVAL 

Here we very briefly explain the three different tasks of 
voice-based information retrieval. 

2.1 Using Text Queries to Retrieve Spoken Documents 

This has usually been referred to as Spoken Document 
Retrieval, and has been considered and studied for long. For 
example, in the last decade in the TREC (Text REtrieval 
Conference) Spoken Document Retrieval track [8], very 
good retrieval performance based on ASR one-best results 
for the spoken documents was obtained as compared to that 
on human reference transcripts, although using relatively 
long queries and relatively long target documents [9]. It was 
then realized that considering much shorter queries and 
much shorter spoken segments with much poorer recognition 
accuracies should be a more realistic scenario [3], [10], [11], 
[12], [13], [14]. For such cases, the problem turned out to be 
much more difficult and most efforts were concentrated on 
detecting a certain term in the very short spoken segments, 
usually referred to as Spoken Term Detection. This task 
looks similar to the traditional task of keyword spotting, 
while the major difference is that here the query set is open 
and very often includes out-of-vocabulary (OOV) words. In 
such task people have found it necessary to consider the 
relatively poor recognition accuracies in various ways, such 
as using lattices to include multiple recognition hypotheses, 
using confusion matrices or fuzzy matching to consider 
possible recognition errors, etc. These will be discussed in 
more details later on. 

2.2 Using Spoken Queries to Retrieve Text Documents 

This has usually been referred to as Voice Search [15], 
[16], [17]. It is very possibly the part of voice-based 
information retrieval closest to realistic applications, and 
thus has attracted very high attention in recent years. The 
information to be retrieved is usually an existing text 
database such as those in directory assistance applications, 
although with lexical variations and so on but primarily 
without recognition uncertainty. It is the user query and 
therefore user intention which is uncertain. A popular 
approach to handle this problem is via the well developed 
technologies of spoken dialogues as shown in Fig. 2. The 
user query is recognized and the output with uncertainty 
used for search. The uncertainty in user intention and the 
high degree of lexical variation between the target 
documents and the user query may lead to many retrieved 
results, which may be disambiguated by spoken dialogue 
loops.  

 

 
 

Fig. 2. Voice Search accomplished by spoken dialogue loops 

Some people also considered similar problems but in slightly 
different directions. For example, some represented the 
queries as more complete lattices, and some performed more 
semantic analysis during retrieval. In such cases the task 
may also be referred to as Spoken Query Processing [18], 
[19]. 

2.3 Using Spoken Queries to Retrieve Spoken Documents 

In this case the speech recognition uncertainly exists on 
both sides of the queries and the documents, and therefore 
naturally this is a more difficult task this. Much less work 
was reported for this task, although some of them was 
performed very early. In an example effort, the task was 
considered as a problem of query-by-example [20]. In 
another example effort, the lattices of the query and the 
documents were aligned and compared using the graphical 
model [21]. People also tried to directly match the query and 
the content on the signal level [22], [23], as other examples. 
But clearly more work is needed for this task. 

 

III. COMPARISON BETWEEN VOICE-BASED AND   

TEXT-BASED INFORMATION RETRIEVAL 

Table 1 lists the comparison between voice-based and 
text-based information retrieval in terms of three aspects: 
(1)Resources, (2)Accuracy and (3)User-system Interaction. 

TABLE 1 COMPARISON BETWEEN VOICE-BASED AND TEXT-BASED 

INFORMATION RETRIEVAL 

 

First consider the resources. Text-based information 
retrieval is so useful and attractive because huge quantities 
of text documents are available over the Internet, and the 
quantity continues to increase exponentially due to the 
convenient access. For voice-based information retrieval, 
definitely multimedia and spoken content are the new trend, 
and such resources as rich as text-based resources can be 
realized even sooner given mature technologies. So this is 
not a problem at all. 

Next consider the retrieval accuracy. Clearly the accuracy 
for text-based information is acceptable to users and users 
even like it very much. In fact, the retrieval engines usually 
can properly rank and filter the retrieved documents which 
improve the perceived precision to a good extent. On the 
other hand, there are still serious problems with the accuracy 
of voice-based information retrieval, especially for 



spontaneous speech under adverse environments in queries 
and/or target documents which give very poor ASR 
accuracies. In fact, memory and computation requirements 
for voice-based information retrieval technologies also cause 
serious problems if a satisfactory accuracy has to be 
achieved. So the cost for memory and computation 
requirements is another problem coming together with the 
accuracy. 

Finally, consider the user-system interaction. For 
text-based information retrieval the retrieved documents are 
easily summarized on-screen, thus easily scanned and 
selected by the user. The user can also select query terms 
suggested by the search engines for next iteration retrieval in 
an interactive process. Such convenient user-system 
interaction is actually a very important key which makes 
text-based information retrieval very attractive. For 
voice-based information retrieval, however, the situation is 
completely different. The multimedia/spoken documents are 
not easily summarized on-screen, thus difficult to scan and 
select. In fact, an efficient user-system interaction scenario 
still doesn’t exist. 

 

IV. RETRIEVAL ACCURACY FOR VOICE-BASED 

INFORMATION RETRIEVAL 

If the recognition of the spoken queries and/or spoken 
target segments (in the target documents) can be 100% 
accurate, the voice-based information is naturally reduced to 
text-based information retrieval. Unfortunately this is never 
true. Recognition errors are inevitable, and the recognition 
accuracy is even not predictable or controllable. Many 
approaches have been considered to handle the recognition 
errors here. Use of confusion matrices or fuzzy matching 
techniques to tolerate recognition errors to a certain extent 
[24], [25], [26], use of lattices rather than 1-best output to 
consider multiple recognition hypotheses so as to include 
more correct results, and use of subword units to try to 
handle the out-of-vocabulary (OOV) words to some degree 
are good examples. Below we very briefly explain two major 
approaches here: Lattice-based Approaches and Subword 
Units. 

4.1. Lattice-based Approaches 

If all utterances in the spoken segments are represented as 
lattices with multiple alternatives rather than 1-best output, 
certainly the probability that the correct words are included 
and considered can be higher. However, much more noisy 
words are also included which cause some trouble, although 
they can be discriminated with some scores such as posterior 
probabilities, while some important words (e.g. OOV words) 
may still be missing. 

Word/Subword-based lattice information was converted 
into a weighted finite state machine (WFSM) in an earlier 
work [7]. The query word/subword sequence was then 
located in the WFSM using exact-matching. A two-stage 
approach was used in another work [27]: audio documents 
were first selected by approximated term frequencies, and 
then a detailed lattice search was performed to determine the 

exact locations. 
Another important issue to be considered for such lattices 

is that the memory and computation requirements may 
become prohibitively huge, especially if we assume all 
spoken documents in the very large archives need to be 
represented as lattices. Great efforts were therefore made to 
reduce such lattices into simplified forms, referred to as 
indexing structures here. One example is in Fig. 3, in which 
the simplified indexing structure is a linear sequence of 
clusters, each of which includes a number of word 
hypotheses with some scores such as posterior probabilities. 
In this way the memory and computation requirements can 
be significantly reduced (but in fact still huge) with the 
primary indexing functionalities preserved. In fact, in such 
structures even more possible paths may be generated. For 
example, in Fig. 3(a) the word W3 can not be followed by 
the word W8, but this becomes possible in Fig. 3(b). N-gram 
matching can then be performed over such structures of the 
spoken queries and/or segments. Many such indexing 
structures have been proposed and shown to be useful, good 
examples include Position Specific Posterior Lattices (PSPL) 
[1], Confusion Networks (CN) [3], [12], Time-based 
Merging for Indexing (TMI) [11], [28], Time-anchored 
Lattice Expansion (TALE) [28], etc. Below we use PSPL 
and CN as two illustrative examples. 

 
Fig. 3. Lattice-based Indexing Structure (a)An original lattice and (b)an 

example of the corresponding simplified indexing structure 
 

4.1.1 Position-Specific Posterior Lattices (PSPL) 

The basic idea of PSPL is to calculate the posterior 
probability prob of a word W at a specific position pos 
(actually the sequence ordering in a path including the word 
W) in a lattice for a spoken segment d as a tuple (W, d, pos, 
prob). Such information is actually hidden in the lattice L of 
d since in each path of L we clearly know the position (or 
sequence ordering) of each word. Since it is very likely that 
more than one path includes the same word in the same 
position, we need to aggregate over all possible paths in a 
lattice that include a given word at a given position. 

A variation of the standard forward-backward algorithm 
can be employed for this computation. The forward 
probability mass (W, t) accumulated up to a given time t at 



the last word W needs to be split according to the length l 
measured in the number of words: 

 
where  is a partial path in the lattice. The backward 
probability (W, t) retains the original definition [29]. 

The elementary forward step in the forward pass can now 
be carried out as follows: 

 
where PAM(W) and PLM(W) denote the acoustic and language 
model scores of W respectively; e is a word arc in the lattice 
and word(e) means the word entity of arc e. 

The position specific posterior probability for the word W 
being the lth word in the lattice is then: 

 
where start is the sum of all path scores in the lattice, and 
Adj(W, t) consists of some necessary terms for probability 
adjustment, such as the removal of the duplicated acoustic 
model scores on W and the addition of missing language 
model scores around W [29]. We can regard the tuples (W, d, 
pos, prob) for a specific spoken segment d, a specific 
position pos but different words W as a cluster of words in 
the indexing structure as mentioned here, which includes a 
number of words along with their posterior probabilities. 

4.1.2 Confusion Network (CN) 

This approach was proposed earlier to cluster the word 
arcs in a lattice into several strictly linear clusters of word 
alternatives, referred to as the Confusion Network (CN) [30]. 
In each cluster, posterior probabilities for the word 
alternatives are also obtained. The original goal of CN was 
focused on the WER minimization for ASR, since it was 
shown that this structure gives better expected word 
accuracy [30], [31]. In the retrieval task here, however, we 
consider CN as a compact structure representing the original 
lattice, giving us the proximity information of each word arc 
[3], [12].  

This approach includes a bottom-up clustering algorithm 
to construct a CN from a lattice. We follow the standard 
forward-backward algorithm to compute the posterior 
probability of each word arc as preprocessing before 
clustering. Each word arc is then regarded as a cluster at the 
beginning of clustering. Then we run two steps of clustering 
to produce the final strictly linear clusters, the intra-word 
clustering and inter-word clustering. After clustering, the 
posterior probabilities of those word arcs in the same cluster 
representing the same word W are summed up to be a single 
posterior probability for a single W in that cluster [30]. 

4.1.3 Fundamental Distinctions Between PSPL and CN 

From the above we may induce several fundamental 
distinctions between PSPL and CN in terms of the basic 
principles and structures. They are summarized here. 

(a) Basic Construction Principles 

The construction of PSPL is based on paths in a lattice. This 
is clear in Fig. 4(a)(b)(d). We first enumerate all the paths in 
the lattice, each with its own length (counted in number of 
words) and path weights as combined language and acoustic 
model scores. The posterior probability of a given word at a 
given position is then computed by aggregating all the path 
weights, where the paths include the given word at the given 
position, as the numerator and then divided by the sum of all 
the path weights in the lattice. The algorithm presented in 
Sec. 4.1.1 is an efficient way to accomplish this. We thus 
regard the words in each position as a cluster as in Fig. 4(d). 
It is clear that the reason for the words being in the kth cluster 
is that there exist some paths carrying those words as the kth 
word in the paths. 

In CN, on the contrary, the construction is based on word 
arcs instead of paths in the lattice. All word arcs that overlap 
in time will be clustered together in one or several clusters 
(while nonoverlapped arcs are never in the same cluster). 
The basic procedures of intra/inter-word clustering in Sec. 
4.1.2 provide a means to ensure that arcs with higher 
probabilities, more similar pronunciations and/or more 
overlaps in time will be clustered first. The reason for a word 
to be in the kth cluster, as in Fig. 4(e), is not as 
straightforward as that for PSPL. By following the priorities 
as constrained by the clustering algorithm, those words 
having similar time spans and usually similar pronunciations 
are finally clustered together. All the clusters are then sorted 
by time, and a specific cluster appears to be the kth one. 
These principles are summarized in Fig. 4(c). 

(b) Posterior Probabilities 

In PSPL we assign a posterior probability prob to a word W 
in the kth cluster as the ratio of the sum of weights of those 
paths carrying W as the kth word to the sum of all path 
weights in the lattice. In CN, the posterior probability prob 
assigned to a word W in the kth cluster represents not only 
the paths carrying W as the kth word, but also possibly those 
as the (k−1)th, (k+1)th word and so on, due to the clustering 
approach of CN. The clustering algorithm tries its best to 
cluster the word arcs together as long as their time spans 
overlap, regardless of the exact positions of these word arcs 
in their respective paths, though sometimes those word arcs 
appearing in similar time spans also occur in similar 
positions in their respective paths. 

(c) Number of Clusters 

The CN gives a rough idea about the number of words in a 
reasonable recognition result at a global view. For example, 
if the CN of an utterance has K clusters, very possibly the 
utterance has around K words. This is quite different from 
PSPL. If we have K clusters in the PSPL structure, all we 
can say is that the longest paths (counted in words) in the 

(1) 

(2) 



lattice have K words, thus usually K is much larger than the 
real number of words. 

(d) Coverage and Space Requirement 

Each word N-gram appearing in the lattice also appear in n 
consecutive clusters of PSPL. But this is not necessarily true 
for CN. As depicted in Fig. 4, while the trigram W3W4W5 
appearing in the lattice also appears in the PSPL’s first to 
third clusters, we can’t find consecutive clusters for it in the 
CN structure, since W5 is in the 4th cluster while W3,W4 in the 
first two clusters. This is very possible for CN and implies 
CN is slightly less complete than PSPL in covering all 
possible word sequences for indexing purposes. 

On the other hand, the same word arc usually duplicate 
many times in different clusters in PSPL, because the word 
lengths of different paths usually differ. A word W may 
appear as several arcs with similar time spans in more than 
one paths, and in some paths it is the kth word while in others 
it is the (k +1)th or (k +2)th. So the word W may 
simultaneously appear in the k,(k + 1)th, (k + 2)th clusters of 
PSPL. But this rarely happens for CN since the first step in 
constructing CN is to cluster the word arcs representing the 
same word with similar time spans together. This also 
implies for PSPL we need much more space to store the 
indices than CN. Note that both PSPL and CN generate extra 
paths than the original lattices [10], [12]. For example in Fig. 
4 the word sequences W1W4W5 in PSPL and W3W8W9 in CN 
(both from the first to the third cluster) do not appear in the 
original lattice. 

4.1.4 Relevance Ranking of Spoken Segments Given PSPL 
or CN 

Given the strictly linear clusters in word-based PSPL or 
CN structures as in Fig. 4 for all the spoken segments, 
assuming a spoken document retrieval task, we may use 
them to evaluate the relevance scores between the segments 
and a query Q, which is a sequence of words, {Wj , j = 1, 2.., 
Q} [10]. We first calculate the expected tapered-count for 
each N-gram {Wi...Wi+N−1} within the query in a spoken 
segment d, S(d,Wi...Wi+N−1) as in Eq (3) below, and 
aggregate the results to produce a score SN-gram (d, Q) for 
each order N as in Eq (4) below[10]: 

 
where L is the lattice obtained from d and k is the cluster 
number in PSPL or CN structures. The different proximity 
types, one for each N-gram order allowed by the query 
length Q, are finally combined by a weighted sum to give the 
final relevance score S(d, Q), 

 
where different weights tN may be possible. 

 

Lattice: 

 
All paths: 

W1W2, W3W4W5, W6W8W9W10, W7W8W9W10 

(b) 

PSPL: 

Locating a word in a segment according to the position 
(or sequence ordering) of the word in a path 

CN: 

Clustering several words in a segment according to 
similar time spans and word pronunciation 

(c) 

PSPL structure: 

W1: p1      W2: p2      W5: p5      W10: p10 
W3: p3    W4: p4    W9: p9 
W6: p6    W8: p8 
W7: p7 

Cluster 1  Cluster 2  Cluster 3  Cluster 4 

(d) 

CN structure: 

W1: p1    W4: p4    W9: p9    W2: p2 
W3: p3    W8: p8              W5: p5 
W6: p6                       W10: p10  
W7: p7 

Cluster 1  Cluster 2  Cluster 3  Cluster 4 

(e) 

Fig. 4. (a) The ASR lattice, (b) all paths in (a), (c) basic principles in 
constructing PSPL and CN, (d) the constructed PSPL structure, (e) the 
constructed CN structure, where W1, W2, … are words and by W1:p1 we 
mean W1 and its posterior probability p1 in a specific cluster. 

4.2 Subword Units 

 
Fig. 5. A partial lattice with several word arcs denoted by their constituent 
subword units. 

With PSPL and CN as discussed above, we can index the 
soft-hits for each word in the lattice as a tuple: (W, d, pos, 
prob) [1], [3]. Then for the query Q composed of several 
words {Wj, j = 1..., Q}, we may check the soft-hits for each 
of these words Wj and find out the relevant documents 

(3) 

(4)

(5)



ranked by their similarities with the query considering the 
posterior probabilities and the proximity information, which 
is much more powerful than the conventional approach 
based on one-best search. However, PSPL or CN is not able 
to handle queries with rare or OOV words. The lower 
N-gram probabilities of rare words or the absence in the 
lexicon for OOV words simply makes it impossible for these 
words to appear in the lattice. This is an important issue 
because rare or OOV words are very often the keywords 
used in queries, because people usually care about new 
events rather than those that are well known [32]. 

Consider an example. Assuming a spoken document d 
contains a rare or OOV word W with the subword units 
{w1w2w3w4}; the ASR lattice for d is shown in Fig. 5. The 
word W never appears as a word arc in the lattice, but is 
replaced by many other words including similar subword 
units such as w3w4b, aw1w2, for instance, where a, b, c, d, . . . 
are other subword units. With PSPL or CN constructed 
based on words the soft-hits for the word W do not include d 
due to the absense of the word arc W in the lattice of d. If the 
PSPL or CN are constructed based on subword units, on the 
other hand, indexing can be based on the subword units. 
Each subword unit has its soft-hits also as the tuples 
mentioned above. Thus for a query Q containing the same 
rare/OOV word W, we simply decompose it into subword 
units {...w1w2w3w4…} and find hits for d in the sequences 
w1w2, w2w3w4, w1w2w3w4, and so on. As a result, with PSPL 
and CN constructed based on subword units, d has a fair 
rank under this query and can be retrieved accordingly, even 
if W is not in the lexicon. 

The above leads to the concept of constructing 
lattice-based indexing structures using subword units [33]. 
Note that in order to do that we need to be able to estimate 
the posterior probabilities for subword units. The estimation 
of posterior probabilities for such subword units is not trivial, 
but several different points of view have been proposed for 
an efficient approximation [33, 34, 35]. One of them is 
briefly summarized below in section 4.2.1. 

4.2.1 Subword Posterior Probability 

 
Fig. 6. A word edge W with subword units w1w2w3 starting at time t’ and 
ending at time t. 

Consider a word W with subword units w1w2w3 
corresponding to an edge e starting at time t’ and ending at 
time t in a word lattice as shown in Fig. 6. During ASR we 
may record the boundaries between w1, w2, and w3, which 
are t1 and t2. Following the previously proposed approach 
[29], we may calculate the posterior probability of the edge e 

given the ASR lattice L, P(e|L), as: 

 
where (t’) and (t) denotes the forward and backward 
probability mass accumulation up to time t’ and t as in the 
standard forward-backward algorithm. start is the same as in 
Eq. (2). To extend the same approach to compute the 
posterior probability of a subword unit of W, say w1, we may 
write P(e1|L) as: 

 
Here we have two new values to be estimated, PLM(w1) and 
(t1). 

It may be possible to train a new language model which 
mix words and subwords for estimating PLM(w1). However, 
it was shown [36] that subword-based language model has 
less predicting ability than word-based one, and the way to 
use subwords and words in a single language model is not 
clear. The value of (t1) is even more difficult to estimate. 
We simply don’t have the node corresponding to t1 in the 
word lattice, and even if we specially generate a node for t1, 
the transitions at this new node is not as free as the other 
nodes due to the lexicon constraints. 

Here we made some simplifications and assumptions to 
have effective and easy estimations of PLM(w1) and (t1). 
First, we assume PLM(W) ≈ PLM(w1). Of course this is a very 
rough assumption and we know that PLM(W) ≤ PLM(w1) since 
the event of w1 for some history includes the event of W for 
the history. Secondly, we assume that w1 has only one path 
to go from t1 to time t, via w2 and w3. Of course there is at 
least one path to go from t1 to t via w2 and w3, but by making 
it “the only one” we may rewrite (t1) as 

(t1)=    txP 21
t
t1

ww . We can now substitute PLM(W) 

and    txP 21
t
t1

ww  for PLM(w1) and (t1) in Eq.(4). 

Now the result is very simple and we have P(e1|L) ≈ P(e|L). 
Similar assumptions can be made on the subword edges e2 
and e3 and we can have P(e2|L) ≈ P(e3|L) ≈ P(e|L). 

4.2.2 Subword-based Position Specific Posterior Lattices 
(S-PSPL) 

With the posterior probability for subword units properly 
estimated, we are now able to construct the Subword-based 
Position Specific Posterior Lattices (S-PSPL). Similar to 
PSPL, we begin with the computation for the position 
specific probabilities for words, except here the position is 
based on subword units. Similar to those in Sec. 4.1.1, with a 
variation of the standard forward-backward algorithm, the 
forward probability mass (W, t) accumulated up to a given 
time t with the last word being W needs to be split according 
to the length l, measured in number of subword units instead 
of words: 

(6) 

(7) 



 
The backward probability (W, t) retains the original 
definition [29]. 

The elementary forward step is very similar to Eq. (1) 
where l = l’ + Sub(W); Sub(W) is the number of subword 
units in W. PAM(W) and PLM(W) are the same as in Eq. (1). 

 
On the other hand, the position specific posterior 

probability for the word W being the bth to the (b+Sub(W) − 
1)th subword units in the lattice is very similar to Eq. (2): 

 
where Adj(W, t) and start are the same as Eq. (2). Following 
the assumptions made in the above, the probability of a 
subword w being the kth subword unit in the lattice is then 
simply the sum of the position specific posterior 
probabilities for the appropriate words W: 

 
Note that it is possible to recognize subword units directly 

and produce subword-based lattices, from which PSPL for 
subword units can be constructed for indexing. But this 
approach does not in fact yield satisfactory results, since the 
recognition accuracy of plain subword units is generally 
much worse than that of words [7], [36]. On the other hand, 
directly converting the word-level representation of a lattice 
into a subword-level lattice is easy, but that representation 
can include only subword unit strings which are substrings 
of in-vocabulary word string pronunciations [7]. 

But with the approaches presented here, we start with 
word lattices, breaking word arcs into subword unit arcs, 
estimating their posterior probabilities, and then follow 
exactly the same way of constructing PSPL to construct 
S-PSPL as proposed here. In this way we can keep the high 
accuracy of word-based recognition, while at the same time 
use subword units to handle OOV words. In S-PSPL as 
proposed here, by recording only the position information 
and posterior probabilities for subword units, strings of 
subword units are not constrained by in-vocabulary words 
any longer. 

4.2.3 Subword-based Confusion Network (S-CN) 

It is straightforward to construct a subword-based CN 
(S-CN) given the approximations in section 4.2.1 During 
ASR, we may record the start and end time for the subword 
units in each word arc. We then follow section 4.2.1 to 
assign the posterior probabilities for subword units. We then 

regard these subword units as subword arcs and run the 
clustering algorithm as we do for original CN to construct 
S-CN. In each cluster of S-CN, we also sum up the posterior 
probabilities of subword arcs representing the same subword 
unit, as we do for CN. 

4.2.4 Relevance Ranking of Spoken Segments Given 
S-PSPL or S-CN 

For S-PSPL and S-CN, the procedures in section 4.1.4 
remain unchanged, except now we decompose Q into a 
sequence of subword units instead and the allowed N-gram 
of Q is also based on subword units. 

4.2.5 Examples of Frequently Used Subword Units 

Different choices of subword units have been used by 
different research groups in many different works. It seems 
the choice of subword units has to do with the characteristics 
of the specific languages. For example, phonemes (or 
phoneme N-grams in similar approaches) have been 
popularly used for many alphabetic languages such as 
English [37], [38]. Graphemes [39] and graphones [40], [41] 
were also used in some works. People also used word 
fragments, or sometime referred to as particles, which are 
groups of phonemes very often appear together and can be 
derived by data-driven approaches [42], [43]. Morphs or 
morph-like units [44], [45], on the other hand, have been 
found very useful for morph-based languages such as 
Turkish and Finnish. On the other hand, Mandarin Chinese is 
monosyllable-based, for which there is a special mapping 
relation between monosyllables and characters. It has been 
found very early that syllables, characters (and N-grams of 
them in similar approaches) are very useful subword units 
for Mandarin Chinese [46], [47], [33]. 

4.3 Some Example Test Results 

Here we very briefly summarize some example test results 
to see the performance of the various approaches mentioned 
above [47]. 

4.3.1 Experimental Setup 

The corpora used in the experiments to be retrieved are 
Mandarin broadcast news stories collected daily from local 
radio stations in Taiwan from August to September 2001. 
We manually divided segmented these stories into 5034 
segments, each with one to three utterances. We used the 
TTK decoder [48] developed at National Taiwan University 
to generate the bigram lattices for these segments. From the 
bigram lattices, we generated the corresponding word-based 
PSPL/CN and S-PSPL/S-CN structures, with which we 
recorded the tuple (segment id, position, posterior 
probability) for each word (subword) unit in the respective 
segment’s lattice. 

By altering the beam width in generating the bigram 
lattice, we obtained different lattice depths and sizes and in 
turn word-based PSPL/CN and S-PSPL/S-CN of different 
sizes were generated. Four lattices — L1, L2, L3 and 
L4 —were created, each with averaged 19.89, 30.27, 46.75, 
and 72.77 edges per spoken word respectively. The disk size 
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needed to store the four lattices was 19.2, 29.1, 44.5, 
69.3MB respectively. 

A trigram language model estimated from a 40M news 
corpus collected in 1999 was used. The lexicon of the 
decoder consisted of 62K words selected automatically from 
the above training data based on the PAT tree algorithm [49]. 
The acoustic models included a total of 151 
right-context-dependent intra-syllable Initial-Final (IF) 
models, trained using 8 hrs of broadcast news stories 
collected in 2000. The recognition character accuracy 
obtained for the 5034 segments was 75.27% (under trigram 
one-pass decoding). As the corpus was in Mandarin Chinese, 
the subword units used in S-PSPL and S-CN were characters 
and syllables. 

159 text test queries were generated by manual selection 
from a set of automatically generated candidates, each 
including 1 to 3 words. The candidates were high-frequency 
N-grams with length 1 to 3 words which appeared at least 8 
times in the 5034 segments. 39 of the 159 queries included 
OOV words and were thus categorized as OOV queries, 
while the remaining 120 were in-vocabulary (IV) queries. 

Word-based PSPL/CN and S-PSPL/S-CN resulted in a 
total of 6 experiments: (a)(b) word-based PSPL and CN; 
(c)(d) character-based S-PSPL and S-CN; and (e)(f) 
syllable-based S-PSPL and S-CN. 

4.3.2 Test Results 

The results are plotted in Fig. 7 where memory size and 
MAP (Mean Average Precision, computed by the standard 
trec_eval package used by the TREC evaluations, evaluated 
for all queries, IV plus OOV) are the two dimensions, which 
demonstrates clear tradeoffs between index size and retrieval 
accuracies. We have six curves for the six approaches (a)-(f) 
considered to show this tradeoff. Each curve has 4 points, 
representing the results for the 4 lattice sizes, L1, L2, L3 and 
L4. The distinctions between PSPL and CN discussed in 
section 4.1.3 can be verified here. For example, as 
mentioned in section 4.1.3 that CN is less complete in 
indexing as compared to PSPL, but PSPL uses much more 
memory space. 

 
Fig. 7. The tradeoff between MAP and index size for the different 
approaches considered [47]. 

In principle those approaches at the upper left corner of Fig. 
7 are more attractive, because higher MAP is obtained at 
smaller index size. So we see subword-based approaches use 
less memory space but achieves much higher accuracy, for 
example S-PSPL looks quite attractive. More detailed 
discussions about the data here are also available [47]. 

 

V. USER-SYSTEM INTERACTION FOR VOICE BASED 

INFORMATION RETRIEVAL 

As mentioned above, for text-based information retrieval 
the retrieved documents can be easily summarized on the 
screen, thus easily scanned and selected by the user. Very 
often the user can also select some query terms suggested by 
the search engine for next iteration retrieval in an iterative 
process. In other words, interactive or dialogue 
functionalities are not only popularly used for text-based 
information retrieval, but an important reason why the 
text-based information retrieval is useful and attractive. 

For voice-based information retrieval, on the other hand, 
we don’t have such interactive or dialogue scenario yet. 
Unlike the written documents with well structured 
paragraphs and titles, the multimedia and spoken documents 
are both very difficult or browse, since they are just 
audio/video signals, very difficult to be shown on the screen, 
and the user can not go through each of them from the 
beginning to the end during browsing. 

A few examples explaining the need of interactive or 
dialogue functionalities in voice-based information retrieval 
are listed here. First, the user’s query during retrieval is 
usually very short which inevitably includes ambiguity and 
therefore results in too many outputs. For example, given the 
query “George Bush”, the user may be interested in the Iraq 
or China issue. The system can tell the difference only with 
following-up interactions. Second, OOV word problem is 
often handled by subword-based indexing and retrieval 
techniques as mentioned previously, but such techniques 
also naturally lead to many irrelevant retrieved documents 
and thus low precision. Following-up interactions or 
dialogues are therefore very helpful for the user to identify 
and select the desired information. Third, the gap between 
the system and the user in such scenarios is usually huge. It 
is difficult for the user to formulate his queries precisely 
describing his information needs to retrieve efficiently. The 
system also needs a good mechanism to probe the user’s 
needs. As a result, a series of follow-up questions and 
interactions is certainly very helpful. Dialogues are certainly 
a good solution to such problems [50]. This is why 
use-system interaction is an important issue here. 

5.1 Proposed Approaches 

In order to address this issue, one possible solution is to 
use multi-modal dialogues to help the user to “navigate” 
across spoken documents archives and find the desired 
spoken documents. In this concept, for a query given by the 
user, the retrieval system produces a topic hierarchy 
constructed from the retrieved spoken documents to be 



shown on the screen. Each node on the hierarchy represents 
a cluster of retrieved documents and is labeled by a key term, 
or a topic. The spoken documents can also be presented in 
forms of automatically generated summaries or titles in 
addition. The user can then expand his query easily by 
choosing or deleting the key terms within the topic hierarchy 
by a simple click or a second spoken query to specify more 
clearly what he is looking for, while at the same time browse 
through the titles and summaries (if available) when needed. 
This is a multi-modal dialogue process because the system 
response is in form of a topic hierarchy displayed on the 
screen, and the user input may be given by clicks or spoken 
queries. With a few dialogue turns, the small set of spoken 
documents desired by the user can be found by a more 
specific query precisely expanded during the dialogue 
process. This is the way the system guides the user to 
“navigate” across the spoken archives to find the desired 
documents, as shown in Fig. 8. [51]. In such approaches, the 
following key elements seems to be needed: information 
extraction (to extract key information such as key terms or 
topics, titles and summaries from the spoken documents), 
document structuring (to organize the set of retrieved spoken 
documents into some form of hierarchical structures) and 
query-based (able to respond to the series of user queries to 
offer the information about system output for the request) [6]. 
A set of technologies has been proposed for such purposes 
and is referred to as multimedia or spoken document 
understanding and organization [5], with which it is possible 
to construct a convenient user-system interaction interface 
for the purpose here. This will be briefly explained below. 

 

 
Fig. 8. The multi-modal dialogue scenario for convenient user-system 
interaction. 

 
 

5.2 Semantic Analysis of Spoken Documents 

Today many machine learning tools have been available 
for semantic analysis of documents. Most of them can be 
used for spoken documents, but we have to bear in mind that 
spoken documents include inevitable ASR errors. Here we 
very briefly summarize the Probabilistic Latent Semantic 
Analysis (PLSA) [52] as an example. 

Latent Semantic Analysis (LSA) has been widely used in 
analyzing the content of documents by exploring the 
relationships between a set of terms and a corpus of 
documents considering a set of latent topics. In recent years, 
efforts have been made to establish a probabilistic 

framework for the above latent topical approaches, including 
improved model training algorithms, of which PLSA or 
aspect model [52] is a popularly used example. In PLSA, a 
set of latent topic variables is defined, Tk, k = 1, 2, . . . , K, to 
characterize the “term-document” co-occurrence 
relationships, as shown in Figure 9. Both the document di 
and a term tj are assumed to be independently conditioned on 
an associated latent topic Tk. The conditional probability of a 
document di generating a term tj thus can be parameterized 
by 

 
Notice that this probability is not obtained directly from the 
frequency of the term tj occurring in di, but instead through 
P(tj |Tk), the probability that the term tj is used in the latent 
topic Tk, as well as P(Tk|di), the likelihood that di addresses 
the latent topic Tk. The PLSA model can be optimized with 
EM algorithm by maximizing a carefully defined likelihood 
function [52]. 

 
Fig. 9. Graphical representation of the Probabilistic Latent Semantic Analysis 
(PLSA) model. 

5.3 Key Term Extraction from Spoken Documents 

Key terms have long been used to identify the semantic 
content of documents. The only difference here is that the 
key terms need to be extracted automatically from spoken 
documents which are dynamically generated and updated 
from time to time. In fact, key terms have also been found 
useful in constructing retrieval models. The retrieval can 
naturally become more precise if the key terms in 
queries/documents can be known [53]. In addition to many 
other approaches being used for key term extraction, PLSA 
mentioned above offers very useful parameters for key term 
extraction. Two example parameters are briefly explained 
below [54]. 

(a) Latent Topic Significance 

The latent topic significance score of a term tj with respect to 

a topic  ktk TS,T
j

, is defined as: 

 
where n(tj, di) is the occurrence count of the term tj in a 
document di, and P(Tk|di) is obtained from a PLSA model 
trained with a large corpus. In equation (12) the term 
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frequency of tj in a document di, n(tj, di), is further weighted 
by a ratio which has to do with how the document di is 
focused on the topic Tk, since the denominator of the ratio is 
the probabilities that the document di is addressing all other 
topics different from Tk. After summation over all 

documents di, a higher 
jtS (Tk) obtained in equation (12) 

implies the term tj has a higher frequency in the latent topics 
Tk than other latent topics, and is thus more important in the 
latent topic Tk. 

(b) Latent Topic Entropy 

The latent topic entropy of a term tj is defined as 

 
Apparently higher entropy here implies the term is 
frequently observed in many different latent topics, or is less 
specific semantically. Lower entropy, on the other hand, 
indicates that the term is focused on very few latent topics, 
and thus possibly is a key term for these few latent topics. 

5.4 Automatic Generation of Summaries and Titles for 
Spoken Documents 

Automatic summarization of text or spoken documents 
has been actively investigated for long time [55]. Many 
approaches for automatic summarization of documents, 
among others, have attempted to select a number of 
indicative sentences or passages from the original document 
according to a target summarization ratio, and sequence 
them to form a summary. Different approaches have been 
used to identify sentences carrying concepts closer to the 
complete documents [56]. The spoken documents bring extra 
difficulties such as the recognition errors, problems with 
spontaneous speech, and lack of correct sentence or 
paragraph boundaries. In order to avoid the redundant or 
incorrect parts while selecting the important and correct 
information in spoken documents, multiple recognition 
hypotheses, confidence scores, acoustic and language model 
scores and other forms of grammatical knowledge have been 
utilized [54], [57], [58], [59], [60], [61], [62], [63]. In recent 
years, a general approach have been found to be very 
successful [57], in which each sentence in the document, S = 
t1t2 . . . tj . . . tn, represented as a sequence of terms tj , is 
given a score: 

 
where some statistical measure s(tj) (such as TF/IDF or the 
like) and linguistic measure l(tj) (e.g., named entities and 
different parts-of-speech (POSs) are given different weights, 
function words not included) are defined for each term tj . 
c(tj) and g(tj) are calculated from the confidence score and 
N-gram score for the term tj , b(S) is calculated from the 
grammatical structure of the sentence S, and λ1, λ2, λ3, λ4 and 

λ5 are weighting parameters. In this framework, a 
Significance Score specially selected for this purpose for s(tj) 
in equation (14) has been found specially useful [57], while 
other parameters such as the Latent Topic Significance and 
Latent Topic Entropy in equations (12)(13) were also 
successfully used [54]. 

The titles exactly complement the summaries for the user 
during browsing and retrieval. The user can easily select the 
desired document with a glance at the list of titles. He can 
then looks through or listen to the summaries in text or 
speech form for the titles he selected. Automatic generation 
of titles for spoken documents was less reported as 
compared to automatic generation of summaries, probably 
because the task is even more difficult. A title has to be very 
brief and readable, in addition to being able to tell the key 
information of the document [64], [65], [66], [67], [68]. An 
example work reported recently is briefly summarized below 
[69]. It includes two parts: the training part and the testing 
part, as shown in Fig. 10. In the training part, three sets of 
carefully designed models are trained with a training corpus 
of text documents with human-generated titles: term 
selection model tells the most suitable terms to be included 
in the title, term ordering model gives the best ordering of 
the terms to make the title readable, and title length model 
tells the reasonable length of the title. In the testing part, the 
input testing documents are first transcribed into texts with 
errors using ASR techniques, and then text summaries are 
obtained. In this way the least important utterances can be 
removed and important terms can be better collected and 
used to construct the title. A delicate Viterbi algorithm is 
then performed on the summaries with scores obtained from 
the above three sets of models, which gives the output title. 

 

 

Fig. 10. The block diagram of the recently proposed approach of 
automatically generating titles for spoken documents 

 

5.5 Semantic Clustering and Structuring of Spoken 
Documents 

As mentioned above, multimedia or spoken documents are 
difficult to show on the screen and difficult to browse. It is 
therefore a reasonable approach to try to cluster them into 
some structures based on the semantic concepts or topics of 
the documents, so as to help the user to “navigate” across the 
retrieved documents as well as the entire document archive 
to find out what he needs. This may include two different 
parts: query-based local semantic structuring and global 
semantic structuring. 
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5.5.1 Query-based Local Semantic Structuring 

For each query entered by the user, a Topic Hierarchy can 
be constructed from the many spoken documents retrieved to 
be shown on the screen for the user, on which each node 
represents a set of spoken documents with similar semantic 
concepts and is labeled by a key term or a topic. This topic 
hierarchy offers a user interface for multi-modal dialogue 
between the user and the system. This is shown in Fig. 8 
above, and the construction of the topic hierarchy is referred 
to as query-based local semantic structuring [6, 51]. 

The topic hierarchy can be constructed in various ways. A 
most straightforward approach is to develop a feature vector 
Vd for each retrieved spoken document d in terms of the key 
terms it includes, and then build a feature vector vt for each 
key term t by averaging all those document feature vectors 
Vd for documents including the key term t weighted by the 
term frequencies. The Hierarchical Agglomerative 
Clustering and Partitioning (HAC+P) algorithm [70] can 
then be performed on-line in real time using these feature 
vectors vt to cluster all the key terms into a balanced 
hierarchy. Every node on the hierarchy is therefore a key 
term or a topic, which actually includes all retrieved 
documents including this key term. This HAC+P algorithm 
consists of two phases: an HAC-based clustering to 
construct a binary-tree hierarchy and a partitioning (P) 
algorithm to transform the binary-tree hierarchy to a 
balanced and comprehensive m-ary hierarchy, where m can 
be different integers at different splitting nodes. An example 
partial list of such a topic hierarchy obtained for an archive 
of broadcast news is shown Figure 11. 

 
Fig. 11. An example topic hierarchy constructed for the retrieved broadcast 
news stories obtained with the query: “US and Middle East” 

The first phase of HAC algorithm is based on the 
similarity between two clusters Ci and Cj of key terms, S(Ci, 
Cj), 

 
where c(vt, vs) is the cosine measure of the angle between the 
vectors vt and vs for key terms t and s. The HAC algorithm is 
performed bottom-up. Assume there are n key terms in the 
retrieved documents, the initial clusters, C1, C2, ...,Cn, are 
exactly the n key terms. Let Cn+i be the new cluster created 
at the i-th step by merging two clusters. The output binary 
tree can be expressed as a list, C1, ...,Cn, Cn+1, ...,C2n−1. An 
example is in Figure 12(a), where n = 5, and C6, ...,C9 are 
created by HAC [51], [70]. 

 
Fig. 12. An illustrative example for the HAC+P algorithm 

The second phase of partitioning is top-down. The binary 
tree is partitioned into several sub-hierarchies first, and then 
this procedure is applied recursively to each sub-hierarchy. 
The point is that in each partitioning procedure the best level 
at which the binary-tree hierarchy should be cut in order to 
create the best set of sub-hierarchies has to be determined 
based on the balance of two parameters: the cluster set 
quality and a preferred number of splitting branches obtained 
at the level chosen. As shown in Figure 12(a), partitioning 
can be performed on 4 possible levels by a cut through the 
binary tree, l = 1, 2, 3, and 4. If a cut is performed at the 
level l = 2, the result will be three sub-hierarchies, C5, C6, 
and C7 as shown in Figure 12(b) [51], [70]. 

5.5.2 Global Semantic Structuring 

In addition to the topic hierarchy as mentioned above, 
sometimes it will be very helpful to have a semantic 
structure constructed for a wider coverage of the documents 
even before a query is entered, telling the user the global 
semantic structure of the document archive to help the user 
browse or navigate across the archive. This is referred to as 
global semantic structuring here. One way to achieve this 
purpose is to use PLSA to analyze the topics Tk for the 
archive (or a subset of it), and then cluster the documents di 
using the probabilities P(Tk|di). These clusters can be labeled 
by a set of key terms with highest scores for documents in 
the clusters, and organized in a two-dimensional tree 
structure, or a multi-layered map, as shown in Fig. 13, for 
the convenience of the user. In this multi-layer map, 
documents addressing similar topics are grouped in the same 
cluster. On each layer, distance between clusters on the map 
has to do with the relationships between the topics for the 
documents. Also, a cluster with many documents can be 
expanded into another map in the next layer [71]. 

 
Fig. 13. The two-dimensional tree structure or multi-layered map for global 
semantic structuring 
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5.6 Interactive Retrieval in a Dialogue Loop 

With all the supporting materials as presented above in 
sections 5.1-5.5, it is now possible to construct the 
user-system interaction interface for voice-based information 
retrieval as a dialogue loop [50], [72], [73], [74], very 
similar to the very successful spoken dialogue systems 
developed by many research groups in recent decades. 

5.6.1 Dialogue Systems in Voice-based Information 
Retrieval 

Clearly we wish to learn all successful approaches in the 
very successful spoken dialogue systems [75], [76], [77], 
[78], [79], [80]. However, we have to realize the dialogue 
systems we are considering here are somewhat different. The 
distinct feature for the dialogue systems discussed here is 
that instead of with a well-organized or relational database at 
the back-end, the knowledge source to be explored by the 
dialogue process is usually an unstructured archive of 
documents, in either text, speech or multimedia form. Under 
such environment, we are actually faced with many new 
challenges. First, without a well-organized database at the 
back-end, the goal of Spoken Language Understanding (SLU) 
becomes difficult to define. Semantic slots and frames may 
still be useful, but they are not transformed into an SQL 
query for a relational database. Second, a much wider 
spectrum with unknown scope and scale of the back-end 
knowledge source also implies a much higher degree of 
variations in the user input utterances, which usually include 
very short queries, homonyms words, polysemous words, 
and even OOV words. Different from the mainstream 
spoken dialogue systems, for which the SLU component 
relies heavily on the ASR output words, here the user’s 
intention may be difficult to correctly identify even with 
correct ASR output words (e.q. very short queries or 
polysemous words), not mentioning that ASR can never 
recognize OOV words. Third, different from the mainstream 
spoken dialogue systems in which the user is usually very 
clear about what kind of information is available and 
accessible; here the user is usually not aware of the content 
and structure of the back-end knowledge source. As a result 
efficient interaction and proper guidance by the system 
during the dialogue process become necessary. Finally, as 
has been mentioned repeatedly, the back-end knowledge 
very often includes multimedia or spoken documents. 
Therefore the system outputs are usually difficult to be 
explained in short speech utterances or shown on the screen, 
and difficult to be browsed by the user, and the problem 
becomes even worse when the user tries to access the 
information via small hand-held clients with very small 
screen. Therefore the system output presented to the user in 
a more compact, comprehensive, and structural way 
becomes an important requirement for efficient interaction. 
This is why we need the techniques mentioned in sections 
5.1-5.5 [50]. 

The block diagram of the proposed dialogue loop for 
voice-based information retrieval is shown in Fig. 14 [50]. 
This block diagram is for spoken document retrieval by 

spoken queries. Some modification is needed for other tasks. 
There are three major building blocks in Fig. 14: spoken 
language based information access (primarily using the 
techniques presented in section 4), dialogue modeling, and 
multi-modal user interface. The block of multi-modal user 
interface may includes the presentation of system output in 
terms of key terms, titles and summaries, and the topic 
hierarchy discussed above in sections 5.1-5.5. The block of 
dialogue modeling will be discussed below. 

 

Fig. 14. Structure of a type-II dialogue system 

5.6.2 Dialogue Modeling for Voice-based Information 
Retrieval 

Because not too much work on this dialogue modeling has 
been reported, probably because the concept of considering 
the necessary interactions between the user and the system 
for voice-based information retrieval purposes as a dialogue 
loop is still new. Below, we present one example approach 
for dialogue modeling with such purposes based on Markov 
Decision Process (MDP) [81]. 

The approach is based on the assumption that a topic 
hierarchy with nodes labeled by key terms or topics is 
constructed for system output, as mentioned above. At the 
early stage of the dialogue, because the user doesn’t know 
what can be found from the back-end archive and how to 
enter the query efficiently, very often he only enters very 
short queries. With such very short queries, the retrieved 
documents can be many, a large number of key terms can be 
extracted, and as a result the topic hierarchy constructed can 
be very large. The purpose of dialogue modeling here is 
therefore to rank the key terms before constructing the topic 
hierarchy. The goal of ranking here is to minimize the 
number of key terms the user needs to enter before his 
information needs are satisfied, assuming he chooses the 
first key term on the topic hierarchy from the top which is 
relevant to his needs. In this way, the key terms ranked the 
highest will appear on the top of the constructed topic 
hierarchy, so the user may spend only minimum time in 
navigating across the hierarchy, and the system may use only 
limited space in the screen of hand-held clients to show the 
most important topics first. This is the basic scenario for 
dialogue modeling discussed here. 

First of all, we define an internal state Si for the dialogue 
as the And-combinations of all the query terms the user has 
entered from the beginning, and the machine action Am as the 



change in the internal state when an extra query term is 
entered by the user to further expand the query. For example, 
in the state S2 = [ti, tj ] (ti, tj are two query terms entered), if a 
new term tk is entered, this automatically leads to a new state 
S5 = [ti, tj, tk]. The goal of dialogue modeling here is to 
minimize the number of query terms a user has to enter 
before his information needs are satisfied, very similar to 
minimizing the number of dialogue turns in mainstream 
spoken dialogue systems. We thus define the total reward R0, 
to be maximized in the MDP framework, as the above 
number of query terms the user has to enter. But the latter 
number should be minimized rather than maximized, or the 
total reward R0 should be actually negative of the above 
number. We therefore define the reward function, r(Si, Am), 
as negative one if the action Am leads the state Si to a new 
state Sj and the documents retrieved by Sj doesn’t satisfy the 
user, and zero otherwise. 

With the above definitions we can see that the reward 
function is determined by each specific user rather than a 
predefined function. The learning process can then be 
represented as a state transition tree structure as shown in 
Fig. 15, in which each node is an internal state, or a series of 
query terms entered. The tree in Fig. 15 is for a specific user, 
in which the leaf nodes represented by double circles are 
those states where the user is satisfied. Each of these leaf 
nodes are labeled by a score m(·), which is the negative of 
the number of the query terms successively entered in order 
to arrive at the state, or the total reward R0 to be maximized. 
We then give the score u to each intermediate state as shown 
in Fig. 15, which is the maximum score m(·) for all child leaf 
nodes of the intermediate state, u = maxi[m(Si)], where the 
maximization is performed over all child leaf nodes of the 
state. Such a learning process can be performed with a huge 
number of training simulated users to obtain the dynamics of 
the reward function and a balanced view of how efficient a 
query term entered at each state can satisfy the user. The 
scores u for all the states averaged over a huge number of 
training users is then used to rank the key terms. The query 
term ranking and the internal states then determines the 
operations of the dialogue manager, including the 
construction of the topic hierarchy [81]. 

 
Fig. 15. A typical learning tree constructed for the retrieval states for a 
specific user 

5.7 Some Example Test Results 

In prelimary tests with the dialogue systems as presented 

above for voice-based information retrieval, an archive of 
10,000 broadcast news stories in Mandarin Chinese served 
as the back-end unstructured knowledge source. The topic 
hierarchy presenting the system output for the block of 
Multi-modal User Interface in Fig. 14 and the term ranking 
approach for the block of Dialogue Modeling in Fig. 14 were 
both implemented [6], [50], [51], [81]. In the test, 5,000,000 
users were simulated in training the dialogue modeling 
module, while another 1,000 users were simulated for test. 
All entered key terms were automatically extracted from the 
archive of news stories. We evaluated the performance of 
this dialogue system in terms of task success rate and the 
average number of query terms needed for a successful 
retrieval. The task was defined to be successful if the user is 
satisfied or the recall is above a given threshold [81]. 
Recognition errors for queries and documents were 
simulated by generating feature vectors according to the 
Hidden Markov Models with increased Gaussian mixture 
variances, and then recognized normally [81]. The dialogue 
modeling discussed above is compared against two 
previously proposed term selection algorithms, the wpq 
method [82] and the tf-idf method. 

Fig. 16 (a) shows the detailed numbers of failure trials and 
successful trials completed in different number of query 
terms out of the 1000 simulated testing users. The queries 
was assumed to be 100% correct, and 1000 out of the 10,000 
news stories were assumed to be spoken with character 
accuracy of 71% (the rest in text form and completely 
correct). It can be found that with the tf-idf method, 746 out 
of the 1000 trials failed; all successful trials were finished 
within 7 query terms. Much better performance was obtained 
for the wpq method. However, when the proposed dialogue 
modeling was used, only 120 trials failed, and all trials were 
completed within 4 query terms. Similar plots can be seen in 
Fig. 16 (b), in which query recognition accuracy was 
reduced to 74% and 1700 out of the 10,000 news stories 
were spoken with character recognition accuracy of 77%. 

 

 
Fig. 16. Number of failure trials and successful trials completed in different 
number of query terms for the proposed dialogue modeling approach 
compared to the wpq and tf-idf methods for two different cases [81]. 

In Fig. 17 (a)(b) we plot the task success rate and the 
average number of query terms needed in successful trials 
for the same three methods as discussed above as functions 
of the query recognition accuracies, where in case (1) all the 
10,000 news stories were 100% correct, and in case (2) 1700 
of them has accuracy of 77%. It can be found that the 
performance of the dialogue modeling was very well, and 



quite robust with respect to recognition errors. 

 

Fig. 17. (a) The task success rates and (b) the average numbers of query 
terms needed in successful trials for different query recognition accuracies 
for two different cases [81]. 

VI. SUCCESSFUL PROTOTYPE SYSTEMS FOR TYPICAL 

APPLICATION EXAMPLES 

In this section we very briefly present a few successful 
prototype systems for typical application examples, among 
many others, for voice-based information retrieval. As 
mentioned previously, retrieval of multimedia information 
based on the included voice information is a very attractive 
application direction. The examples presented here are all 
multimedia retrieval systems driven by voice. 

6.1 A Broadcast News Browser 

In this system [6], the broadcast news were taken as the 
example spoken/multimedia documents. The broadcast news 
archive to be summarized includes a total of 5800 news 
stories with a total length of 110 hours, all in Mandarin 
Chinese. The block diagram of the system is in Fig. 18, 
which includes not only the retrieval function, but the 
semantic analysis, automatic generation of titles and 
summaries, semantic structuring and dialogue loop as 
described in section 5.1-5.6. 

For those news stories with video signals, the video 
signals were also summarized using video technologies, for 
example, video frames for human faces, moving objects and 
scene changes are more important, and the length of the 
video summary is based on the length of the speech 
summary. For the global semantic structure, a total of six 
two-dimensional tree structures were obtained for six 
categories of news stories, e.g. world news, business news, 
sports news, etc. A 3x3 small map on the second layer of the 
two-dimensional tree for world news overlaid with the video 
signal is shown in Fig. 19. This is a map expanded from a 
cluster in the first layer covering all disasters happening 
worldwide. As can be found that on this map one small 
cluster is for airplane crash (墜機) and similar, one for 
earthquake (地震) and similar, one for hurricane (颶風) and 
similar, and so on. All news stories belonging to each node 
of the two-dimensional tree are listed under the node by their 
automatically generated titles. The user can easily browse 
through the titles or click to view either the summaries or the 
complete stories. With this structure it is much more easier 
for the user to browse the news stories either top-down or 

bottom-up. For the query-based local semantic structuring, 
the topic hierarchy constructed in real-time from the news 
stories retrieved by a query, “White House of United States 
(美國白宮),” is shown on the left lower corner of Fig 20, in 
which the three topics on the first layer are respectively Iraq 
(伊拉克), US (美國) and Iran (伊朗), and one of the node in 
the second layer below US is President George Bush (布希). 
When the user clicks the node of President George Bush, the 
relevant news stories are listed on the right lower corner by 
their automatically generated titles. The user can then click 
the “summary” button to view the summary, or click the 
titles to view the complete stories. Such information are 
overlaid with the news retrieved with the highest score. 

 

 
Fig. 18. The block diagram of the initial prototype system 

 

 

Fig. 19. A 3x3 map on the second layer expanded from a cluster on the first 
layer of the global semantic structure for world news 

 



 

Fig. 20. The result of query-based local semantic structuring for a query of 
“White House of United States” 

6.2 A Course Lecture Browser 

Although there have been many course lectures available 
over the Internet, a major difficulty of efficiently utilizing 
the many complete course lectures available over the 
network is that it takes quite long time to listen to a complete 
course (e.g. a complete course may include 45 hours), and it 
may not be easy for leaders or researchers working in the 
industry to spend so much time to learn a complete course. 
On the other hand, the content of a course is usually well 
structured; the learner cannot understand an advanced 
subject without knowing related fundamentals of the 
background. As a result, direct retrieval of the course content 
for some advanced subjects is usually not helpful to the 
learner, simply because the retrieved results are difficult to 
understand. Also, after learning a subject the learner usually 
doesn’t know the related subjects which should be learned 
next. 

This system divided the course lectures into “major 
segments” based on the slides used; key term extraction, 
hierarchical summarization, and semantic structuring were 
then performed for the “major segments”. More importantly, 
a key term graph was constructed which serves not only as 
the global semantic structure, but as the query-based local 
semantic structure too, since the key term naturally links all 
the “major segments” both globally for the whole course and 
locally for retrieved segments. All these offer the necessary 
materials and scenario for the user-system interaction needed 
for retrieval. The user can thus enter queries to the system 
and learn what he needs in his own way [83]. 

A single course lecture corpus was used for the prototype 
system, which is a course on Digital Speech Processing with 
a total length of 45 hours. It was offered in National Taiwan 
University (NTU) in 2006 by a single instructor in Mandarin 
Chinese, while all the terminologies were produced directly 
in English. This system was given a name of “NTU Virtual 
Instructor”. The block diagram of the system is shown in Fig. 
21 [83]. On the upper left corner the course lectures includes 
3 parts: audio, video and slides. Audio and video signals 
have synchronized time indices, but the slides are not 
synchronized with the signals in general. The core of the 
proposed approach is on the lower left part of Fig. 21, 
content organization and retrieval. Topic segmentation is to 
try to collect a number of “short segments” which discuss 

the same subject topic together into “major segments”, 
primarily based on the transcribed short segments and the 
slides. Semantic analysis and summarization is then 
performed and key terms extracted. Semantic structuring is 
primarily based on a key term graph constructed for all the 
key terms extracted with an example partial list shown in Fig. 
22, which is used to link all the major segments semantically. 
The basic unit for voice-based information retrieval is the 
short segments. 

 

 
Fig. 21. Block diagram of the course lecture browser 

 

Fig. 22. An example partial list of the Key Term Graph 

6.3 A Personal Photo Browser 

Content-based image retrieval using image features is 
very successful [84] but not satisfactory for personal photos, 
because users prefer high-level semantic descriptions of 
photos that use words as indices or queries, such as who, 
where, when, what (objective/events) and so on. This desired 
scenario can be in general achieved by tags entered via 
networks. But such tags are usually freely entered and not 
associated with any type of ontology or categorization, 
therefore often inaccurate or ambiguous [85]. In addition, for 
personal photos many tags are personal and thus have to be 
annotated by the users themselves, such as “mammy and 
catty”, or “my little house”. Tagging by the users themselves, 
on the other hand, is time-consuming. Automatic tagging 
such as semantic concept detection [86] is promising, but 
still suffers from relatively low accuracy currently [87]. It 
will be highly desired if only very few photos need to be 
tagged, and if the users can tag the photos with spontaneous 
speech when the photo is taken. In addition, very often a 
given query results in a large number of photos. For efficient 
browsing it will be very convenient for the user if the large 
number of retrieved photos can be classified based on 
meaningful groups (or “topics” in semantic analysis as 



mentioned in 5.2 above) rather than just sorted by scores. 
Since different queries result in different sets of retrieved 
photos, pre-defined ontology cannot be used here. 
Unsupervised clustering for search results is therefore 
attractive. 

Here we present a user-friendly latent semantic retrieval 
and clustering system for personal photos with sparse 
spontaneous speech annotation using fused speech and 
image features [88]. We used image features to derive the 
relationships among photos, since these features are the 
universal language describing photos. We trained semantic 
models with Probabilistic Latent Semantic Analysis (PLSA) 
as described in 5.2 above using fused speech and image 
features to analyze the “topics” of these photos. Only 10% of 
the photos need to be annotated by spontaneous speech of a 
few words regarding one or two semantic categories (e.g. 
what or where), while all photos can be effectively retrieved 
using high-level semantic queries in words (e.g. who, what, 
where, when) and clustered by the semantics as well. 

As shown in Fig. 23, the proposed approach includes a 
preparation phase (left part) and a retrieval and clustering 
phase (right part). Visual words and audio words are first 
generated for each photo (Blocks (B) and (C), lower left of 
the figure) in the photo archive (Block (A), upper left 
corner). These two types of words are then fused to construct 
a “document” for each photo (Block (D), middle). These 
“documents” and their “words” are then used to train a 
PLSA topic model (Blocks (E)(F)(G), upper middle). The 
user query then includes only very few semantic words in 
text form. PLSA retrieval gives the desired photos (Block(H), 
right middle), which are then further clustered into 
“query-based local semantic structure” as described in 5.5.1 
based on the PLSA topics (Block (I), lower right corner). 

 

 
Fig. 23. The proposed approach: preparation phase (document construction 
for photos and PLSA model training) and retrieval and clustering phase 
(based on PLSA) 

Fig. 24 shows the user interface and an example output for 
an input query “大家(all together)”. The three rows of 
photos here show the top three photos in each of the first 
three clusters automatically generated after retrieval. They 
are all photos for all people, but respectively “in the opera 
house”, “in restaurants”, and “on the street” as the three 
clusters here. Among the nine photos only the second of the 

first cluster has a speech tag of “大家在歌劇院 (all in opera 
house together)”. All other eight photos are not tagged at all, 
but can be properly retrieved and clustered. 

 
Fig. 24. The user interface and an example output for the personal photo 
browser 

VII. CONCLUDING REMARKS 

Text-based information retrieval has been extremely 
successful, and all roles of texts can be accomplished by 
voice. Multimedia content including audio information has 
been growing exponentially over the web. The concept of 
voice-based information retrieval has thus been very 
attractive. Substantial effort has been made and very 
significant progress has been obtained. However, compared 
to text-based information retrieval, we notice that 
voice-based information retrieval still has a very long way to 
go. 

Relatively poor accuracy due to uncertainty in speech 
recognition, specially for spontaneous speech in adverse 
environments and for OOV words, is clearly the major 
problem. Along this direction, lattices and efficient indexing 
structures are very useful example approaches. Use of 
subword units seems to be very attractive, because it can 
cover many OOV words, may be used across different 
languages, and possibly uses much less space. Methods for 
reducing computation and memory requirements are 
definitely highly desired, since the computation and memory 
requirements may be prohibitively huge. In addition, many 
techniques useful in text-based retrieval, such as query 
expansion, semantic concept matching, page ranking, etc., 
may all be considered here. 

On the other hand, more efficient user-system interaction 
interface is also a key issue for practical applications. 
Multi-modal dialogues with topic hierarchy constructed from 
retrieved documents whose nodes are labeled by key terms 
or topics may be a possible approach, and automatically 
generated summaries and titles may be helpful. Much more 
work in this area is still needed. 

Speech recognition technology has been difficult for many 
applications, probably because the user very often expects 
the technology can replace human beings. Voice-based 
information retrieval may be an area slightly different in this 
aspect, since it may handle massive quantities of content 



which is impossible for human beings. For this reason it can 
be a good application area for speech recognition, although 
there is still a very long way to go. 
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