### H. Schwenk

#### Introduction

Examples Comparison

#### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

Trends and Challenges in Language Modeling for Speech Recognition and Machine Translation

Holger Schwenk

LIUM, University of Le Mans, France

Holger.Schwenk@lium.univ-lemans.fr

December 15, 2009

H. Schwenk

### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

# Trends and Challenges in Language Modeling

- Is there a live beyond back-off *n*-grams ?
- Will we modify Kneser-Ney smoothing again ?
- Will we be able to do research without relying on Google to provide large text collections ?
- How to obtain more research grants to buy more powerful computers ?

3

H. Schwenk

### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

# Trends and Challenges in Language Modeling

- Is there a live beyond back-off *n*-grams ?
- Will we modify Kneser-Ney smoothing again ?
- Will we be able to do research without relying on Google to provide large text collections ?
- How to obtain more research grants to buy more powerful computers ?

・ロッ ・雪 ・ ・ ヨ ・ ・

-

H. Schwenk

### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

# Trends and Challenges in Language Modeling

- Is there a live beyond back-off *n*-grams ?
- Will we modify Kneser-Ney smoothing again ?
- Will we be able to do research without relying on Google to provide large text collections ?
- How to obtain more research grants to buy more powerful computers ?

イロト 不得下 不良下 不良下

-

H. Schwenk

### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

# Trends and Challenges in Language Modeling

- Is there a live beyond back-off *n*-grams ?
- Will we modify Kneser-Ney smoothing again ?
- Will we be able to do research without relying on Google to provide large text collections ?
- How to obtain more research grants to buy more powerful computers ?

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ → □ ● → ○ ○ ○

H. Schwenk

### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

# Trends and Challenges in Language Modeling

- Is there a live beyond back-off *n*-grams ?
- Will we modify Kneser-Ney smoothing again ?
- Will we be able to do research without relying on Google to provide large text collections ?
- How to obtain more research grants to buy more powerful computers ?

### H. Schwenk

### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### Applications of LM

Automatic speech recognition (ASR)

 $\hat{w} = \arg \max_{w} Pr(w|x) = \arg \max_{w} Pr(w)Pr(x|w)$ 

Statistical machine translation (SMT), translate f to e

$$\hat{e} = rg\max_{e} Pr(e|f) = rg\max_{e} Pr(e)Pr(f|e)$$

- We already have an LM since we have been working on ASR before
- The translation model is too bad and can't find good translations and smooth target sentence at once

### H. Schwenk

### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### Applications of LM

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

• Automatic speech recognition (ASR)

$$\hat{w} = \arg \max_{w} Pr(w|x) = \arg \max_{w} Pr(w)Pr(x|w)$$

• Statistical machine translation (SMT), translate f to e

$$\hat{e} = \arg\max_{e} Pr(e|f) = \arg\max_{e} Pr(e)Pr(f|e)$$

- We already have an LM since we have been working on ASR before
- The translation model is too bad and can't find good translations and smooth target sentence at once

### H. Schwenk

### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### Applications of LM

• Automatic speech recognition (ASR)

$$\hat{w} = \arg \max_{w} Pr(w|x) = \arg \max_{w} Pr(w)Pr(x|w)$$

• Statistical machine translation (SMT), translate f to e

$$\hat{e} = \arg \max_{e} \frac{Pr(e|f)}{Pr(f|e)} = \arg \max_{e} Pr(e)Pr(f|e)$$

- We already have an LM since we have been working on ASR before
- The translation model is too bad and can't find good translations and smooth target sentence at once

### H. Schwenk

### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### Applications of LM

• Automatic speech recognition (ASR)

$$\hat{w} = \arg \max_{w} Pr(w|x) = \arg \max_{w} Pr(w)Pr(x|w)$$

• Statistical machine translation (SMT), translate f to e

$$\hat{e} = \arg\max_{e} Pr(e|f) = \arg\max_{e} Pr(e)Pr(f|e)$$

- We already have an LM since we have been working on ASR before
- The translation model is too bad and can't find good translations and smooth target sentence at once

### H. Schwenk

### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### Applications of LM

• Automatic speech recognition (ASR)

$$\hat{w} = \arg \max_{w} Pr(w|x) = \arg \max_{w} Pr(w)Pr(x|w)$$

• Statistical machine translation (SMT), translate f to e

$$\hat{e} = \arg \max_{e} Pr(e|f) = \arg \max_{e} Pr(e)Pr(f|e)$$

- We already have an LM since we have been working on ASR before
- The translation model is too bad and can't find good translations and smooth target sentence at once

### H. Schwenk

### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### Applications of LM

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

### Speech Recognition

- The LM must choose among a large number of segmentations of the phoneme sequence into words, given the pronunciation lexicon
  - The LM must also select among homonyms
  - It deals with morphology (gender accordance, ...)
  - The word order is given by the sequential processing of speech

### H. Schwenk

### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### Applications of LM

### Machine translation

- Deal with morphology like for ASR
- The LM helps to choose between different translations
- Translation may require word reordering for certain language pairs
- $\Rightarrow$  the LM has to sort out the good and the bad ones

### Comparison

- It is an interesting question whether language modeling for MT is more or less difficult than for ASR
- One may consider that the semantic level is more important in MT

### H. Schwenk

### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### Machine translation

- Deal with morphology like for ASR
- The LM helps to choose between different translations
- Translation may require word reordering for certain language pairs
- $\Rightarrow$  the LM has to sort out the good and the bad ones

### Comparison

- It is an interesting question whether language modeling for MT is more or less difficult than for ASR
- One may consider that the semantic level is more important in MT

### Applications of LM

H. Schwenk

### Applications of LM

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

#### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### Example output of good SMT systems:

- , it's a camera. I a do you have in Japan.  $({\rm BTEC~Zh}/{\rm En})$
- Oh, Japan produced by the camera than in Japan to buy cheaper ah. (Zh/En)
- Japanese strange, the camera here cheaper it in Japan. (BTEC Ar/En)

H. Schwenk

### Applications of LM

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

#### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### Example output of good SMT systems:

- , it's a camera. I a do you have in Japan.  $(\rm BTEC~Zh/En)$
- Oh, Japan produced by the camera than in Japan to buy cheaper ah. (Zh/En)
- Japanese strange, the camera here cheaper it in Japan. (BTEC Ar/En)

H. Schwenk

### Applications of LM

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

#### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### Example output of good SMT systems:

- , it's a camera. I a do you have in Japan.  $({\rm BTEC~Zh}/{\rm En})$
- Oh, Japan produced by the camera than in Japan to buy cheaper ah. (Zh/En)
- Japanese strange, the camera here cheaper it in Japan. (BTEC Ar/En)

LM for ASR and SMT H. Schwenk

### Applications of LM to MT

### Log-linear approach

# $\hat{e} = \arg \max_{e} Pr(e)Pr(f|e)$ $= \arg \max_{e} \prod_{i} Pr(e, f)^{\lambda_{i}}$ $= \arg \max_{e} \sum_{i} \lambda_{i} \log Pr(e, f)$

 $\lambda_i$  are numerically optimized to maximize translation performance

- In practice, we use 5 scores for the translation model, a couple of scores for the reordering model a word penalty and one LM score
- ⇒ Apparently there is much more modeling effort on the TM than on the LM

### oduction LC

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

LM for ASR and SMT H. Schwenk

### Applications of LM to MT

### Log-linear approach

Examples Comparison Huge I Ms

IRST Distributed Google Randomized

CSI M

Architecture Results Toolkit

Outlook

$$\hat{e} = \arg \max_{e} Pr(e)Pr(f|e)$$

$$= \arg \max_{e} \prod_{i} Pr(e, f)^{\lambda_{i}}$$

$$= \arg \max_{e} \sum_{i} \lambda_{i} \log Pr(e, f)$$

 $\lambda_i$  are numerically optimized to maximize translation performance

- In practice, we use 5 scores for the translation model, a couple of scores for the reordering model a word penalty and one LM score
- ⇒ Apparently there is much more modeling effort on the TM than on the LM

### H. Schwenk

#### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### Comparison of Research on LM

| ASR                        | МТ            |                     |
|----------------------------|---------------|---------------------|
| 3-gram back-off            |               | 4-gram              |
| 4-gram back-off modif. KN  | $\Rightarrow$ | modif. KN           |
| class LM                   |               |                     |
| linguistic motivated LMs   |               | ?                   |
| Discriminative approaches  |               |                     |
| adaptation (MAP, IR + web) | $\Rightarrow$ | starting slowly     |
|                            |               | use of huge corpora |
| 2 papers                   | $\Leftarrow$  | distributed and     |
|                            |               | compressed LMs      |

- MT has only taken over a small part of research from ASR
- Research on huge LMs seems to be limited to MT

### H. Schwenk

#### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### Comparison of Research on LM

| ASR                        | МТ            |                     |
|----------------------------|---------------|---------------------|
| 3-gram back-off            |               | 4-gram              |
| 4-gram back-off modif. KN  | $\Rightarrow$ | modif. KN           |
| class LM                   |               |                     |
| linguistic motivated LMs   | $\Rightarrow$ | ?                   |
| Discriminative approaches  |               |                     |
| adaptation (MAP, IR + web) | $\Rightarrow$ | starting slowly     |
|                            |               | use of huge corpora |
| 2 papers                   | $\Leftarrow$  | distributed and     |
|                            |               | compressed LMs      |

- MT has only taken over a small part of research from ASR
- Research on huge LMs seems to be limited to MT

### H. Schwenk

#### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### Comparison of Research on LM

| ASR                        | МТ            |                     |
|----------------------------|---------------|---------------------|
| 3-gram back-off            |               | 4-gram              |
| 4-gram back-off modif. KN  | $\Rightarrow$ | modif. KN           |
| class LM                   |               |                     |
| linguistic motivated LMs   | $\Rightarrow$ | ?                   |
| Discriminative approaches  |               |                     |
| adaptation (MAP, IR + web) | $\Rightarrow$ | starting slowly     |
|                            |               | use of huge corpora |
| 2 papers                   | $\Leftarrow$  | distributed and     |
|                            |               | compressed LMs      |

- MT has only taken over a small part of research from ASR
- Research on huge LMs seems to be limited to MT

### H. Schwenk

### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### Comparison of Research on AM and LM $\,$

### Acoustic modeling (cf. talk of M. Gales)

- HMMs are still alive, but many new ideas
- Structure: decision tree state clustering
- Speaker adapation and adaptive training
- Discriminative methods, MMI, MCE, MPE, MPFE, ...
- Large margin approaches, ...

### Language modeling

- A couple of papers at each conference
- Is the problem solved (with back-off n-grams) ?

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

### H. Schwenk

### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### Comparison of Research on AM and LM $\,$

### Acoustic modeling (cf. talk of M. Gales)

- HMMs are still alive, but many new ideas
- Structure: decision tree state clustering
- Speaker adapation and adaptive training
- Discriminative methods, MMI, MCE, MPE, MPFE, ...
- Large margin approaches, ...

### Language modeling

- A couple of papers at each conference
- Is the problem solved (with back-off *n*-grams) ?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

### H. Schwenk

### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### Comparison of Research on AM and LM $\,$

### Acoustic modeling (cf. talk of M. Gales)

- HMMs are still alive, but many new ideas
- Structure: decision tree state clustering
- Speaker adapation and adaptive training
- Discriminative methods, MMI, MCE, MPE, MPFE, ...
- Large margin approaches, ...

### Language modeling

- A couple of papers at each conference
- Is the problem solved (with back-off *n*-grams) ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

### H. Schwenk

### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### Comparison of Research on AM and LM $\,$

### Acoustic modeling (cf. talk of M. Gales)

- HMMs are still alive, but many new ideas
- Structure: decision tree state clustering
- Speaker adapation and adaptive training
- Discriminative methods, MMI, MCE, MPE, MPFE, ...
- Large margin approaches, ...

### Language modeling

- A couple of papers at each conference
- Is the problem solved (with back-off *n*-grams) ?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

H. Schwenk

#### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### No Data is better than more Data

### creasing amounts of data are available

- In-domain data (acoustic transcripts, bitexts): 100-200M
- Gigaword corpus: 1-3G words as a function of the language

・ロト ・ 日本 ・ 日本 ・ 日本

-

• WEB data 100G -1T words

- How to build the model ?
- How to store the model ?
- Hot to use the model ?

H. Schwenk

#### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### No Data is better than more Data

### Increasing amounts of data are available

- In-domain data (acoustic transcripts, bitexts): 100-200M
- Gigaword corpus: 1-3G words as a function of the language

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

-

• WEB data 100G -1T words

- How to build the model ?
- How to store the model ?
- Hot to use the model ?

H. Schwenk

#### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### No Data is better than more Data

### Increasing amounts of data are available

- In-domain data (acoustic transcripts, bitexts): 100-200M
- Gigaword corpus: 1-3G words as a function of the language

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

-

• WEB data 100G -1T words (this is 20 miles of books)

- How to build the model ?
- How to store the model ?
- Hot to use the model ?

H. Schwenk

#### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### No Data is better than more Data

### Increasing amounts of data are available

- In-domain data (acoustic transcripts, bitexts): 100-200M
- Gigaword corpus: 1-3G words as a function of the language

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

• WEB data 100G -1T words

- How to build the model ?
- How to store the model ?
- Hot to use the model ?

### H. Schwenk

#### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### Very large Language Models

- IRSTLM [Federico et al, WMT'07]
- Distributed LM [Emami et al, ICASSP'07; Zhang et al, EMNLP'06]
- Stupid Back-off [Brants et al., EMNLP'07]
- Bloom Filter and randomized LMs [Talbot et al, EMNLP'07; ACL'07; ...]

### IRSTLM

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

#### LM for ASR and SMT

### H. Schwenk

### Introduction

Examples Comparison

### Huge LMs

### IRST

Distributed Google Randomized

### CSLM

Architecture Results Toolkit

- M. Federico and M. Cettolo, *Efficient Handling of N-gram* Language Models for Statistical Machine Translation, WMT'07
- Clever data structures which focus on small memory usage
- Probability quantization
- LM is on one machine
- Experiments in SMT:
  - LM can be trained on more data, given a limited amount of main memory
  - This resulted in an increase of the translation performance

### H. Schwenk

### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### • A. Emami, K. Papieni and J. Sorensen, Large-Scale Distributed Language Modeling, ICASSP'07

Distributed Language Models

- Y. Zhang, A. Hildebrand and S. Vogel, *Distributed* language modeling for n-best list reranking, EMNLP'06
- LM is stored on multiple LM workers
- Data structure: suffix arrays
- Experiments in ASR:
  - Baseline 4-gram LM was trained on 192M words of in-domain data
  - Rescoring with distributed 5-gram trained on 4G words: +0.5% WER
- Experiments in MT:
  - Baseline 3-gram LM was trained on 2.8G words
  - Decoding with distributed 5-gram trained on 2.3G words:  $\approx$  +3 points BLEU for Ar/En or Zh/En

### H. Schwenk

#### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

## • T. Brants, A. Popat, P. Xu, F. Och and J. Dean, *Large Language Models in Machine Translation*, EMNLP'07

- Distributed storage of LM
- Stupid Back-off smoothing technique: directly use the relative frequencies and a fixed back-off weight
- Reorganziation of the MT search algorithm
- KN smoothed LMs were trained on up to 31G words (2 days on 400 machines, model size is 89GB)
- Stupid back-off was applied on up to 1.8T words (1 day on 1500 machines, model size is 1.8TB)

### Stupid Back-off

### Stupid Back-off - Results for MT



 The authors report a steadily improvement of the translation quality as a function of the size of the LM training corpus

### and SMT H. Schwenk

L M for ASR

#### Introduction

Examples Comparison

#### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

### H. Schwenk

#### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### Google N-gram collection

### Google made available a collection of 5-gram

- English (LDC 2006): 1.1G 5-grams from 1T words
- European languages (LDC 2009): 100M words from 3 months in 2008

• Does anybody plan to use those for language modeling in ASR ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

• ASR people may be more concerned with speed than performance ?

### H. Schwenk

#### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### Google N-gram collection

### Google made available a collection of 5-gram

- English (LDC 2006): 1.1G 5-grams from 1T words
- European languages (LDC 2009): 100M words from 3 months in 2008

• Does anybody plan to use those for language modeling in ASR ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

• ASR people may be more concerned with speed than performance ?

### H. Schwenk

#### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### Google N-gram collection

### Google made available a collection of 5-gram

- English (LDC 2006): 1.1G 5-grams from 1T words
- European languages (LDC 2009): 100M words from 3 months in 2008

• Does anybody plan to use those for language modeling in ASR ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

• ASR people may be more concerned with speed than performance ?

H. Schwenk

#### ntroduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### Bloom Filters and Randomized LMs

- Lossy encoding based on Bloom filters: use of a data structure that sometimes makes an error, i.e. the model is unable to distinguish between distinct *n*-grams
- Two versions: store *n*-gram counts or probabilities in the Bloom filter
- Will always return the correct value for an *n*-gram that is in the model
- False positives: model can erroneously return a value for an *n*-gram that was never stored (in practice 0.0025%)
- Usually half the size of tree structure

H. Schwenk

### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### What can we learn out of this ?

• Why huge LMs are mainly used in MT ?

- Is this a way to put semantic knowledge into the system ?
- Every time I fire a linguist, the performance of our speech recognition system goes up (Jelinek 1988)
- Should we now fire researchers and rather invest on data collection and more computers ?
- No, since there are many languages for which such large amounts of data are not (freely) available
- We can not always afford to work with huge distributed LMs: stand-alone PC systems, laptops, PDAs, smart phones
- It is less obvious to collect large amounts of data in other domains than "news", e.g. conversational or meeting speech, tourism related tasks, dictation devices (e.g. medical), military, ...

### H. Schwenk

### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### What can we learn out of this ?

### • Why huge LMs are mainly used in MT ?

- Is this a way to put semantic knowledge into the system ?
- Every time I fire a linguist, the performance of our speech recognition system goes up (Jelinek 1988)
- Should we now fire researchers and rather invest on data collection and more computers ?
- No, since there are many languages for which such large amounts of data are not (freely) available
- We can not always afford to work with huge distributed LMs: stand-alone PC systems, laptops, PDAs, smart phones
- It is less obvious to collect large amounts of data in other domains than "news", e.g. conversational or meeting speech, tourism related tasks, dictation devices (e.g. medical), military, ...

### H. Schwenk

### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### What can we learn out of this ?

- Why huge LMs are mainly used in MT ?
- Is this a way to put semantic knowledge into the system ?
- Every time I fire a linguist, the performance of our speech recognition system goes up (Jelinek 1988)
- Should we now fire researchers and rather invest on data collection and more computers ?
- No, since there are many languages for which such large amounts of data are not (freely) available
- We can not always afford to work with huge distributed LMs: stand-alone PC systems, laptops, PDAs, smart phones
- It is less obvious to collect large amounts of data in other domains than "news", e.g. conversational or meeting speech, tourism related tasks, dictation devices (e.g. medical), military, ...

### H. Schwenk

### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### What can we learn out of this ?

- Why huge LMs are mainly used in MT ?
- Is this a way to put semantic knowledge into the system ?
- Every time I fire a linguist, the performance of our speech recognition system goes up (Jelinek 1988)
- Should we now fire researchers and rather invest on data collection and more computers ?
- No, since there are many languages for which such large amounts of data are not (freely) available
- We can not always afford to work with huge distributed LMs: stand-alone PC systems, laptops, PDAs, smart phones
- It is less obvious to collect large amounts of data in other domains than "news", e.g. conversational or meeting speech, tourism related tasks, dictation devices (e.g. medical), military, ...

### H. Schwenk

### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### What can we learn out of this ?

- Why huge LMs are mainly used in MT ?
- Is this a way to put semantic knowledge into the system ?
- Every time I fire a linguist, the performance of our speech recognition system goes up (Jelinek 1988)
- Should we now fire researchers and rather invest on data collection and more computers ?
- No, since there are many languages for which such large amounts of data are not (freely) available
- We can not always afford to work with huge distributed LMs: stand-alone PC systems, laptops, PDAs, smart phones
- It is less obvious to collect large amounts of data in other domains than "news", e.g. conversational or meeting speech, tourism related tasks, dictation devices (e.g. medical), military, ...

### H. Schwenk

### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### What can we learn out of this ?

- Why huge LMs are mainly used in MT ?
- Is this a way to put semantic knowledge into the system ?
- Every time I fire a linguist, the performance of our speech recognition system goes up (Jelinek 1988)
- Should we now fire researchers and rather invest on data collection and more computers ?
- No, since there are many languages for which such large amounts of data are not (freely) available
- We can not always afford to work with huge distributed LMs: stand-alone PC systems, laptops, PDAs, smart phones
- It is less obvious to collect large amounts of data in other domains than "news", e.g. conversational or meeting speech, tourism related tasks, dictation devices (e.g. medical), military, ...

### H. Schwenk

### ntroduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### What can we learn out of this ?

- Why huge LMs are mainly used in MT ?
- Is this a way to put semantic knowledge into the system ?
- Every time I fire a linguist, the performance of our speech recognition system goes up (Jelinek 1988)
- Should we now fire researchers and rather invest on data collection and more computers ?
- No, since there are many languages for which such large amounts of data are not (freely) available
- We can not always afford to work with huge distributed LMs: stand-alone PC systems, laptops, PDAs, smart phones
- It is less obvious to collect large amounts of data in other domains than "news", e.g. conversational or meeting speech, tourism related tasks, dictation devices (e.g. medical), military, ...

### H. Schwenk

### ntroduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### What can we learn out of this ?

- Why huge LMs are mainly used in MT ?
- Is this a way to put semantic knowledge into the system ?
- Every time I fire a linguist, the performance of our speech recognition system goes up (Jelinek 1988)
- Should we now fire researchers and rather invest on data collection and more computers ?
- No, since there are many languages for which such large amounts of data are not (freely) available
- We can not always afford to work with huge distributed LMs: stand-alone PC systems, laptops, PDAs, smart phones
- It is less obvious to collect large amounts of data in other domains than "news", e.g. conversational or meeting speech, tourism related tasks, dictation devices (e.g. medical), military, ...

H. Schwenk

#### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google **Randomized** 

### CSLM

Architecture Results Toolkit

Outlook

# Building LMs on small amounts of Data

### Possible research directions

- Better smoothing ?
- Integration of syntactical or semantic knowledge ?
- Discriminative approaches ?
- Adaptation from a generic (news) model to a task specific one ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

• . . .

### H. Schwenk

### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### $\mathsf{CSLM}$

Architecture Results Toolkit

Outlook

### Theoretical drawbacks of back-off LM:

• Words are represented in a high-dimensional discrete space

Continuous Space LM

- Probability distributions are not smooth functions
- Any change of the word indices can result in an arbitrary change of LM probability
- $\Rightarrow$  True generalization is difficult to obtain

### Main idea [Y. Bengio, NIPS'01]:

- Project word indices onto a continuous space and use a probability estimator operating on this space
- Probability functions are smooth functions and better generalization can be expected

### H. Schwenk

### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### $\mathsf{CSLM}$

Architecture Results Toolkit

Outlook

### Theoretical drawbacks of back-off LM:

• Words are represented in a high-dimensional discrete space

Continuous Space LM

- Probability distributions are not smooth functions
- Any change of the word indices can result in an arbitrary change of LM probability
- $\Rightarrow$  True generalization is difficult to obtain

### Main idea [Y. Bengio, NIPS'01]:

- Project word indices onto a continuous space and use a probability estimator operating on this space
- Probability functions are smooth functions and better generalization can be expected

### H. Schwenk

#### Introduction

Examples Comparison

#### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook



### CSLM - Probability Calculation

- Outputs = LM posterior probabilities of all words: P(w<sub>j</sub> = i|h<sub>j</sub>) ∀i ∈ [1, N]
- Context h<sub>j</sub> = sequence of n-1 points in this space
- Word = point in the *P* dimensional space
- Projection onto continuous space
- Inputs = indices of the n-1 previous words

・ロト ・ 日本 ・ 日本 ・ 日本

### H. Schwenk

#### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook



### CSLM - Probability Calculation

- Outputs = LM posterior probabilities of all words:  $P(w_j = i|h_j) \quad \forall i \in [1, N]$
- Context h<sub>j</sub> = sequence of n-1 points in this space
- Word = point in the *P* dimensional space
- Projection onto continuous space
- Inputs = indices of the n-1 previous words

・ロッ ・雪 ・ ・ ヨ ・ ・

э

### H. Schwenk

#### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook



### CSLM - Probability Calculation

- Outputs = LM posterior probabilities of all words: P(w<sub>j</sub> = i|h<sub>j</sub>) ∀i ∈ [1, N]
- Context h<sub>j</sub> = sequence of n-1 points in this space
- Word = point in the P dimensional space
- Projection onto continuous space
- Inputs = indices of the n-1 previous words

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

-

### H. Schwenk

#### ntroduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

**Architecture** Results Toolkit

Outlook



### CSLM - Probability Calculation

- Outputs = LM posterior probabilities of all words: P(w<sub>j</sub> = i|h<sub>j</sub>) ∀i ∈ [1, N]
- Context h<sub>j</sub> = sequence of n-1 points in this space
- Word = point in the P dimensional space
- Projection onto continuous space
- Inputs = indices of the n-1 previous words

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

-

### H. Schwenk

#### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook



### CSLM - Training

• Backprop training, cross-entropy error

$$E = \sum_{i=1}^{N} d_i \log p_i$$

### + weight decay

- ⇒ NN minimizes perplexity on training data
  - continuous word codes are also learned (random initialization)

э

### H. Schwenk

#### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook



### CSLM - Training

• Backprop training, cross-entropy error

$$E = \sum_{i=1}^{N} d_i \log p_i$$

### + weight decay

 $\Rightarrow$  NN minimizes perplexity on training data

イロト イポト イヨト イヨト

э

 continuous word codes are also learned (random initialization)

### H. Schwenk

#### Introduction

Examples Comparison

#### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook



### CSLM - Training

• Backprop training, cross-entropy error

$$E = \sum_{i=1}^{N} d_i \log p_i$$

### + weight decay

- ⇒ NN minimizes perplexity on training data
  - continuous word codes are also learned (random initialization)

э

### H. Schwenk

#### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### Continuous Space LM

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

### Some details (Computer Speech and Language, pp 492-518, 2007)

- Projection and estimation is done with a multi-layer neural network
- Still an *n*-gram approach, but an LM probability can be calculated for any *n*-gram without backing off
- Can be trained on the same data than the back-off LM using a resampling algorithm
- Efficient implementation is very important
- Used in lattice or *n*-best list rescoring

### H. Schwenk

#### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture

**Results** Toolkit

Outlook

### $\mathsf{CSLM}:\mathsf{Some}\;\mathsf{Results}\;\mathsf{in}\;\mathsf{ASR}$

|             | Back-off LM | CSLM  |
|-------------|-------------|-------|
|             | WER         | WER   |
| En CTS      | 16.0%       | 15.5% |
| Ar CTS      | 30.8%       | 29.7% |
| En BN       | 9.6%        | 9.2%  |
| Fr BN       | 10.7%       | 10.2% |
| En TC-Star  | 10.14%      | 9.17% |
| Sp TC-Star  | 7.55%       | 7.00% |
| En meetings | 26.0%       | 24.4% |
| Ar Gale     | 13.7%       | 13.0% |
| Zh Gale     | 10.5%       | 10.1% |

 $\Rightarrow$  Improvements of 0.4 to 1.6% absolute

### H. Schwenk

#### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture

**Results** Toolkit

Outlook

### $\mathsf{CSLM}:\mathsf{Some}\;\mathsf{Results}\;\mathsf{in}\;\mathsf{SMT}$

• BLEU scores on test data (the higher the better):

| Task | Languages | #words | Back-off LM | CSLM  |
|------|-----------|--------|-------------|-------|
| BTEC | lt/En     | 200k   | 35.55       | 37.41 |
|      | Ar/En     | 200k   | 23.72       | 24.86 |
|      | Zh/En     | 400k   | 19.74       | 21.01 |
|      | Ja/En     | 400k   | 15.11       | 15.73 |
| NIST | Ar/En     | 3.3G   | 47.02       | 47.90 |

- This gain corresponds to roughly 4x more training data
- Dealing with word order seems to be more challenging (Chinese and Japanese)

### H. Schwenk

#### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Archite cture

**Results** Toolkit

Outlook

### $\mathsf{CSLM}:\mathsf{Some}\;\mathsf{Results}\;\mathsf{in}\;\mathsf{SMT}$

• BLEU scores on test data (the higher the better):

| Task | Languages | #words | Back-off LM | CSLM  |
|------|-----------|--------|-------------|-------|
| BTEC | lt/En     | 200k   | 35.55       | 37.41 |
|      | Ar/En     | 200k   | 23.72       | 24.86 |
|      | Zh/En     | 400k   | 19.74       | 21.01 |
|      | Ja/En     | 400k   | 15.11       | 15.73 |
| NIST | Ar/En     | 3.3G   | 47.02       | 47.90 |

- This gain corresponds to roughly 4x more training data
- Dealing with word order seems to be more challenging (Chinese and Japanese)

### H. Schwenk

#### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Archite cture

**Results** Toolkit

Outlook

### $\mathsf{CSLM}:\mathsf{Some}\;\mathsf{Results}\;\mathsf{in}\;\mathsf{SMT}$

• BLEU scores on test data (the higher the better):

| Task | Languages | #words | Back-off LM | CSLM  |
|------|-----------|--------|-------------|-------|
| BTEC | lt/En     | 200k   | 35.55       | 37.41 |
|      | Ar/En     | 200k   | 23.72       | 24.86 |
|      | Zh/En     | 400k   | 19.74       | 21.01 |
|      | Ja/En     | 400k   | 15.11       | 15.73 |
| NIST | Ar/En     | 3.3G   | 47.02       | 47.90 |

- This gain corresponds to roughly 4x more training data
- Dealing with word order seems to be more challenging (Chinese and Japanese)

### H. Schwenk

#### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Archite cture

**Results** Toolkit

Outlook

### $\mathsf{CSLM}:\mathsf{Some}\;\mathsf{Results}\;\mathsf{in}\;\mathsf{SMT}$

• BLEU scores on test data (the higher the better):

| Task | Languages | #words | Back-off LM | CSLM  |
|------|-----------|--------|-------------|-------|
| BTEC | lt/En     | 200k   | 35.55       | 37.41 |
|      | Ar/En     | 200k   | 23.72       | 24.86 |
|      | Zh/En     | 400k   | 19.74       | 21.01 |
|      | Ja/En     | 400k   | 15.11       | 15.73 |
| NIST | Ar/En     | 3.3G   | 47.02       | 47.90 |

- This gain corresponds to roughly 4x more training data
- Dealing with word order seems to be more challenging (Chinese and Japanese)

### H. Schwenk

#### Introduction

Examples Comparison

#### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture

**Results** Toolkit

Outlook

### Continuous Space LM - Use

- Despite the good results the CSLM is not widely used
  - IBM has done several experiments in this direction New paper at this conference
  - Cambridge has recently reimplemented this approach

### H. Schwenk

#### Introduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### Continuous Space LM

### Open source version

- Written in C++
- Interfaced with SRILM (uses same vocabularies, back-off LMs for short-lists and interpolation, ...)
- Fast NN training (bunch mode, multi-threading, resampling, ...)
- *n*-best (and lattice) list rescoring
- Parameter tuning with Condor tool
- Download mid-January from http://liumtools.univ-lemans.fr
- ⇒ Hopefully larger community will use and extend this approach

### H. Schwenk

### Outlook

・ロト ・ 日本 ・ 日本 ・ 日本

э

#### ntroduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

- Don't try to memorize the whole world
- Keep low or medium size resourced tasks
- Try to put more structure into the models
- Discriminative and adaptive approaches, in particular for SMT
- Use and improve CSLM

### H. Schwenk

### Outlook

イロト 不得 とうき イヨト

э

#### ntroduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

Outlook

### • Don't try to memorize the whole world

- Keep low or medium size resourced tasks
- Try to put more structure into the models
- Discriminative and adaptive approaches, in particular for SMT
- Use and improve CSLM

### H. Schwenk

### Outlook

イロト 不得下 不良下 不良下

3

#### ntroduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

- Don't try to memorize the whole world
- Keep low or medium size resourced tasks
- Try to put more structure into the models
- Discriminative and adaptive approaches, in particular for SMT
- Use and improve CSLM

### H. Schwenk

### Outlook

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

#### ntroduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

- Don't try to memorize the whole world
- Keep low or medium size resourced tasks
- Try to put more structure into the models
- Discriminative and adaptive approaches, in particular for SMT
- Use and improve CSLM

### H. Schwenk

### Outlook

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

#### ntroduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

- Don't try to memorize the whole world
- Keep low or medium size resourced tasks
- Try to put more structure into the models
- Discriminative and adaptive approaches, in particular for SMT
- Use and improve CSLM

### H. Schwenk

### Outlook

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

#### ntroduction

Examples Comparison

### Huge LMs

IRST Distributed Google Randomized

### CSLM

Architecture Results Toolkit

- Don't try to memorize the whole world
- Keep low or medium size resourced tasks
- Try to put more structure into the models
- Discriminative and adaptive approaches, in particular for SMT
- Use and improve CSLM