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Trends and Challenges in Language

Modeling

• Is there a live beyond back-o� n-grams ?

• Will we modify Kneser-Ney smoothing again ?

• Will we be able to do research without relying on Google
to provide large text collections ?

• How to obtain more research grants to buy more powerful
computers ?
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Applications of LM

• Automatic speech recognition (ASR)

ŵ = argmax
w

Pr(w |x) = argmax
w

Pr(w)Pr(x |w)

• Statistical machine translation (SMT), translate f to e

ê = argmax
e

Pr(e|f ) = argmax
e

Pr(e)Pr(f |e)

Why should we invert the conditional probability ?
• We already have an LM since we have been working on
ASR before

• The translation model is too bad and can't �nd good
translations and smooth target sentence at once
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Applications of LM

Speech Recognition

• The LM must choose among a large number of
segmentations of the phoneme sequence into words, given
the pronunciation lexicon

• The LM must also select among homonyms

• It deals with morphology (gender accordance, . . .)

• The word order is given by the sequential processing of
speech
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Applications of LM

Machine translation

• Deal with morphology like for ASR

• The LM helps to choose between di�erent translations

• Translation may require word reordering for certain
language pairs

⇒ the LM has to sort out the good and the bad ones

Comparison

• It is an interesting question whether language modeling for
MT is more or less di�cult than for ASR

• One may consider that the semantic level is more
important in MT
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Applications of LM

Example output of good SMT systems:

• , it's a camera. I a do you have in Japan. (BTEC Zh/En)

• Oh, Japan produced by the camera than in Japan to buy
cheaper ah. (Zh/En)

• Japanese strange, the camera here cheaper it in Japan.
(BTEC Ar/En)
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Applications of LM to MT

Log-linear approach

ê = argmax
e

Pr(e)Pr(f |e)

= argmax
e

∏
i

Pr(e, f )λi

= argmax
e

∑
i

λi logPr(e, f )

λi are numerically optimized to maximize translation
performance

• In practice, we use 5 scores for the translation model, a
couple of scores for the reordering model a word penalty
and one LM score

⇒ Apparently there is much more modeling e�ort on the TM
than on the LM
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Comparison of Research on LM

ASR MT

3-gram back-o� 4-gram
4-gram back-o� modif. KN ⇒ modif. KN

class LM
linguistic motivated LMs ⇒ ?
Discriminative approaches

adaptation (MAP, IR + web) ⇒ starting slowly

use of huge corpora
2 papers ⇐ distributed and

compressed LMs

• MT has only taken over a small part of research from ASR

• Research on huge LMs seems to be limited to MT
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Comparison of Research on AM and LM

Acoustic modeling (cf. talk of M. Gales)

• HMMs are still alive, but many new ideas

• Structure: decision tree state clustering

• Speaker adapation and adaptive training

• Discriminative methods, MMI, MCE, MPE, MPFE, . . .

• Large margin approaches, . . .

Language modeling

• A couple of papers at each conference

• Is the problem solved (with back-o� n-grams) ?

• Did we give up ?
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No Data is better than more Data

Increasing amounts of data are available

• In-domain data (acoustic transcripts, bitexts): 100-200M

• Gigaword corpus: 1-3G words as a function of the language

• WEB data 100G -1T words

(this is 20 miles of books)

How to deal with so large amounts of data ?

• How to build the model ?

• How to store the model ?

• Hot to use the model ?
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Very large Language Models

• IRSTLM
[Federico et al, WMT'07]

• Distributed LM
[Emami et al, ICASSP'07; Zhang et al, EMNLP'06]

• Stupid Back-o�
[Brants et al., EMNLP'07]

• Bloom Filter and randomized LMs
[Talbot et al, EMNLP'07; ACL'07; ...]
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IRSTLM

• M. Federico and M. Cettolo, E�cient Handling of N-gram
Language Models for Statistical Machine Translation,
WMT'07

• Clever data structures which focus on small memory usage

• Probability quantization

• LM is on one machine

• Experiments in SMT:
• LM can be trained on more data, given a limited amount
of main memory

• This resulted in an increase of the translation performance
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Distributed Language Models

• A. Emami, K. Papieni and J. Sorensen, Large-Scale
Distributed Language Modeling, ICASSP'07

• Y. Zhang, A. Hildebrand and S. Vogel, Distributed
language modeling for n-best list reranking, EMNLP'06

• LM is stored on multiple LM workers

• Data structure: su�x arrays

• Experiments in ASR:
• Baseline 4-gram LM was trained on 192M words of
in-domain data

• Rescoring with distributed 5-gram trained on 4G words:
+0.5% WER

• Experiments in MT:
• Baseline 3-gram LM was trained on 2.8G words
• Decoding with distributed 5-gram trained on 2.3G words:
≈ +3 points BLEU for Ar/En or Zh/En
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Stupid Back-o�

• T. Brants, A. Popat, P. Xu, F. Och and J. Dean, Large
Language Models in Machine Translation, EMNLP'07

• Distributed storage of LM

• Stupid Back-o� smoothing technique:
directly use the relative frequencies and a �xed back-o�
weight

• Reorganziation of the MT search algorithm

• KN smoothed LMs were trained on up to 31G words
(2 days on 400 machines, model size is 89GB)

• Stupid back-o� was applied on up to 1.8T words
(1 day on 1500 machines, model size is 1.8TB)
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Stupid Back-o� - Results for MT

• The authors report a steadily improvement of the
translation quality as a function of the size of the LM
training corpus
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Google N-gram collection

Google made available a collection of 5-gram

• English (LDC 2006): 1.1G 5-grams from 1T words

• European languages (LDC 2009):
100M words from 3 months in 2008

• Does anybody plan to use those for language modeling in
ASR ?

• ASR people may be more concerned with speed than
performance ?
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Bloom Filters and Randomized LMs

• Lossy encoding based on Bloom �lters: use of a data
structure that sometimes makes an error, i.e. the model is
unable to distinguish between distinct n-grams

• Two versions: store n-gram counts or probabilities in the
Bloom �lter

• Will always return the correct value for an n-gram that is
in the model

• False positives: model can erroneously return a value for
an n-gram that was never stored (in practice 0.0025%)

• Usually half the size of tree structure
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What can we learn out of this ?

• Why huge LMs are mainly used in MT ?

• Is this a way to put semantic knowledge into the system ?

• Every time I �re a linguist, the performance of our speech
recognition system goes up (Jelinek 1988)

• Should we now �re researchers and rather invest on data
collection and more computers ?

• No, since there are many languages for which such large
amounts of data are not (freely) available

• We can not always a�ord to work with huge distributed
LMs: stand-alone PC systems, laptops, PDAs, smart
phones

• It is less obvious to collect large amounts of data in other
domains than �news�, e.g. conversational or meeting
speech, tourism related tasks, dictation devices (e.g.
medical), military, . . .
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Building LMs on small amounts of

Data

Possible research directions

• Better smoothing ?

• Integration of syntactical or semantic knowledge ?

• Discriminative approaches ?

• Adaptation from a generic (news) model to a task speci�c
one ?

• . . .
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Continuous Space LM

Theoretical drawbacks of back-o� LM:

• Words are represented in a high-dimensional discrete space

• Probability distributions are not smooth functions

• Any change of the word indices can result in
an arbitrary change of LM probability

⇒ True generalization is di�cult to obtain

Main idea [Y. Bengio, NIPS'01]:

• Project word indices onto a continuous space and use a
probability estimator operating on this space

• Probability functions are smooth functions and
better generalization can be expected
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CSLM - Probability Calculation
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hj = wj−n+1, ...,wj−2,wj−1

• Outputs = LM posterior
probabilities of all words:
P(wj = i |hj) ∀i ∈ [1,N]

• Context hj = sequence of
n−1 points in this space

• Word = point in the P
dimensional space

• Projection onto continuous
space

• Inputs = indices of the
n−1 previous words
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CSLM - Training
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• Backprop training,
cross-entropy error

E =
N∑
i=1

di log pi

+ weight decay

⇒ NN minimizes perplexity
on training data

• continuous word codes are
also learned
(random initialization)
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Continuous Space LM

Some details (Computer Speech and Language, pp 492�518, 2007)

• Projection and estimation is done with a multi-layer neural
network

• Still an n-gram approach, but an LM probability can be
calculated for any n-gram without backing o�

• Can be trained on the same data than the back-o� LM
using a resampling algorithm

• E�cient implementation is very important

• Used in lattice or n-best list rescoring
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CSLM : Some Results in ASR

Back-o� LM CSLM
WER WER

En CTS 16.0% 15.5%

Ar CTS 30.8% 29.7%

En BN 9.6% 9.2%

Fr BN 10.7% 10.2%

En TC-Star 10.14% 9.17%

Sp TC-Star 7.55% 7.00%

En meetings 26.0% 24.4%

Ar Gale 13.7% 13.0%

Zh Gale 10.5% 10.1%

⇒ Improvements of 0.4 to 1.6% absolute
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CSLM : Some Results in SMT

• BLEU scores on test data (the higher the better):

Task Languages #words Back-o� LM CSLM

BTEC

It/En 200k 35.55 37.41
Ar/En 200k 23.72 24.86
Zh/En 400k 19.74 21.01
Ja/En 400k 15.11 15.73

NIST Ar/En 3.3G 47.02 47.90

• Signi�cant improvements despite large amounts of LM
training data (3.3G words)

• This gain corresponds to roughly 4x more training data

• Dealing with word order seems to be more challenging
(Chinese and Japanese)
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Continuous Space LM - Use

• Despite the good results the CSLM is not widely used
• IBM has done several experiments in this direction
New paper at this conference

• Cambridge has recently reimplemented this approach
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Continuous Space LM

Open source version

• Written in C++

• Interfaced with SRILM (uses same vocabularies, back-o�
LMs for short-lists and interpolation, . . .)

• Fast NN training
(bunch mode, multi-threading, resampling, . . .)

• n-best (and lattice) list rescoring

• Parameter tuning with Condor tool

• Download mid-January from
http://liumtools.univ-lemans.fr

⇒ Hopefully larger community will use and extend this
approach

http://liumtools.univ-lemans.fr
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Outlook

• Don't try to memorize the whole world

• Keep low or medium size resourced tasks

• Try to put more structure into the models

• Discriminative and adaptive approaches, in particular for
SMT

• Use and improve CSLM
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