

Audio-Visual Automatic Speech Recognition & Related Bimodal Technologies: A Review of the State-of-the-Art & Open Problems

Gerasimos Potamianos

Research Director, Institute of Informatics & Telecommunications, National Center for Scientific Research (NCSR) "Demokritos" Athens, Greece

http://www.iit.demokritos.gr/~gpotam

December 16th, 2009

ASRU 2009, Merano, Italy

Some words about NCSR "Demokritos"

- Largest Greek gvmnt funded research center.
- Located in Athens, Greece.
- Founded in the late **50's**.
- Consists of 8 research institutes – very diverse.
- Bird's eye view

Institute of Informatics & Telecommunications

- About 100 permanent & collaborating staff.
- Over 20 national & EU projects currently running.
- One significant concentration is on computational intelligence systems.
 - Text, video, audio processing; knowledge engineering; machine learning.

Some current EU projects at IIT

- INDIGO → Interaction with Personality and Dialogue Enabled Robots single person-robot HCI cultural heritage domain, anthropomorphic robot.
- CASAM → Computer-Aided Semantic Annotation of Multimedia aggregate human and machine knowledge with the ultimate target of minimizing human involvement in the annotation of multimedia content.
- <u>PRONTO</u> -> Event Recognition for Intelligent Resource Management real-time, knowledge-led support for decision-makers in sectors characterised by large volumes of multi-source, multi-format data.
- <u>PASCAL2</u> → Pattern Analysis, Statistical Modeling and Computational Learning – NoE.
- IMPACT -> Improving Access to Text innovative tools to enhance the capabilities of OCR engines and the accessibility of digitised text and lay down the foundations for the mass-digitisation programs
- SYNC3 → Synergistic Content Creation & Communication intelligent framework for making more accessible the vast quantity of user comments on news issues – connect blogosphere & traditional media sources.
- <u>AVISPIRE</u> → Audio-Visual Speech Processing for Interaction in Realistic Environments – starting now (FP7–PEOPLE–RG). AV speech processing in broadcast news and meeting domains.

Overview of Presentation

1. Introduction:

- Motivation.
- Audio-visual speech technologies.
- Potential applications.

2. Audio-visual speech components with emphasis on ASR:

- Data resources.
- Visual feature representation for speech applications.
- Audio-visual combination (fusion).

3. Other audio-visual speech technologies:

- Speech synchrony.
- Speech enhancement.
- Speech inversion.
- Speaker recognition.
- Speech synthesis.

4. Concluding Remarks.

- Summary.
- Acknowledgements.

Motivation – Bimodality of Speech (I)

Speech production is bimodal:

- Mouth cavity is part of **vocal tract**.
- Lips, teeth, tongue, chin, and lower face muscles play part in speech production and are visible.
- Various parts of the vocal tract play different role in the production of the basic speech units. E.g., lips for **bilabial** phone set **B**=/p/,/b/,/m/.

Speech perception is bimodal:

- We **lip-read** in noisy environments to improve intelligibility.
 - E.g., human speech perception experiment by Summerfield (1979): Noisy recognition at low SNR.
- We integrate audio and visual stimuli, as demonstrated by the <u>McGurk effect (McGurk and McDonald, 1976</u>).

Audio /ba/ + Visual /ga/ \rightarrow AV /da/

Hearing impaired people lip-read.

Schematic representation of speech production (J.L. Flanagan, *Speech Analysis, Synthesis, and Perception,* 2nd ed., Springer-Verlag, New York, 1972.)

ASRU 2009, Merano, Italy

2009.12.16

Motivation – Bimodality of Speech (II)

Although the visual speech information is less than audio …

- **Visemes:** Visually distinguishable classes of phonemes: **6-20**, significantly less than the number of phonemes.
- ... the visual channel provides important complementary information to audio:
 - Consonant confusions in audio are due to same manner of articulation, in visual due to same place of articulation.
 - Thus, e.g., /t/,/p/ confusions drop by 76%, /n/,/m/ by 66%, compared to audio (Potamianos et al., '01).

	Place of articulation		Manner of articulation	
DL A PA VLV P BLY G	G : Glottal V : Velar P : Palatal PA : Palatoalveolar A : Alveolar D : Dental L : Labiodental LV: Labial-Velar B : Bilabial	/h/ /g,k/ /y/ /r,d3, f,tf,3/ /d,l,n,s,t,z/ /0,ð/ /f,v/ /w/ /b,m,p/	AP : Approximant LA: Lateral N : Nasal PL: Plosive F : Fricative AF: Affricate	/ r, w, y/ /l/ / m, n/ / b, d, g, k, p, t/ / f, h, s, v, z, 6, ð, ſ, 3/ / tſ, dʒ/

Correlation between original and estimated features; *upper*: visual from audio; *lower*: audio from visual (Jiang et al., 2003).

Given the above, and the fact that <u>noise in the audio and visual</u>
 <u>channels is in most cases uncorrelated</u>, this leads to interest in AV speech processing as a means to improve <u>robustness</u>.

The following speech technologies can benefit from the visual modality:

Automatic speech recognition (ASR).

Automatic speaker identification / verification.

Visual (labial)

Face

Authenticate or recognize speaker إليال

AV Speech Technologies (II)

- Speaker localization / speech activity & synchrony detection / speech separation.
- Speech synthesis:

Model based:

Sample based:

Viterbi search for best mouth sequence (Cosatto et al. 2000).

Speech inversion:

Audio-visual synchrony and tracking (Nock, Lyengar, and Neti, 2000).

Katsamanis et al. 2007

Potential of AV Speech Research & Current State

- Clearly, in scenarios where robustness is an issue and cameras / video is available.
 - Automobiles.
 - Broadcast News.
 - Ambient intelligence environments / smart rooms
 - Networks of cameras and microphones in <u>offices</u>, <u>homes</u>, etc.
 - Advanced handhelds.
- Unfortunately, many of these environments represent significant challenges to the visual modality as well.
- Coupled with the few resources (data, groups) working on the problem, this has created significant lag compared to the progress in acoustic speech processing.
- Basic approaches to the problems in the field have followed in the footsteps of traditional acoustic speech research. This has yielded novel algorithms, significant research work, and prototype demo systems.

1. Introduction:

- Motivation.
- Audio-visual speech technologies.
- Potential applications.

2. Audio-visual speech components with emphasis on ASR:

- Data resources.
- Visual feature representation for speech applications.
- Audio-visual combination (fusion).
- 3. Other audio-visual speech technologies:
 - Speech synchrony.
 - Speech enhancement.
 - Speech inversion.
 - Speaker recognition.
 - Speech synthesis.

4. Concluding Remarks.

- Summary.
- Acknowledgements.

<u> Audio-Visual Databases (I)</u>

- Mostly aiming at small-vocabulary ASR tasks.
- Recorded under ideal AV conditions small number of subjects.
- Most commonly used database: **CUAVE**, 36 subjects, connected digits (Paterson et al., 2002).
- Mostly in English, but also in Japanese, German, French, ...

- Large databases have been collected at IBM Research at various environments – both for LVCSR and small-vocabulary tasks.
 - Studio, office, automobile, broadcast news, headset (up to 300 subjects per set).
- Another large database is AVTIMIT (MIT):
 - 223 speakers, TIMIT SX sentences.
 - Ideal conditions.

- Interesting also multi-sensory databases in the car environment:
 - AVICAR 86 subjects (digits, alphas, sentences), 4 channel video recording, 8 channel audio recording.
 - Aurora 2J, 3J AV → multiple cameras (infrared channel as well), in-car, Japanese (~100 subjects, Japanese digits).
 - UTDrive.

<u> Audio-Visual Databases (III)</u>

 Multi-view databases have been collected by a few groups, e.g. IBM Research, CMU, University of Karlsruhe, etc.

CMU

IBM

- A few databases are also available for some other tasks than AVASR, e.g.
 - **XM2VTS**, **VidTIMIT** \rightarrow speaker recognition.
 - AVGrid \rightarrow speech separation.
 - **MOCHA** \rightarrow speech inversion.

UEdin

- **1. Visual Front End:** Visual channel processing / visual speech representation.
- 2. Fusion: Audio-visual information "integration" / combination.

1. Introduction:

- Motivation.
- Audio-visual speech technologies.
- Potential applications.

2. Audio-visual speech components with emphasis on ASR:

- Data resources.
- Visual feature representation for speech applications.
- Audio-visual combination (fusion).
- 3. Other audio-visual speech technologies:
 - Speech synchrony.
 - Speech enhancement.
 - Speech inversion.
 - Speaker recognition.
 - Speech synthesis.

4. Concluding Remarks.

- Summary.
- Acknowledgements.

Face Detection (I)

Statistical, appearance based face detection approach, based on "strong classifiers".

- <u>2-class</u> classification (into faces / non-faces).
- "Face template" (e.g., 11x11 pixel rectangle) ordered into vectors **x** (compressed if desired).
- A <u>trainable</u> scheme "scores"/<u>classifies</u> **x** into the 2 classes.
- Pyramidal search (over locations, scales, orientations) provides face candidates x.
- Use your favorite <u>classifier (LDA, GMM, NN, SVM, ...)</u>, favorite <u>representation</u> (PCA, DCT), ...

Results (in face detection accuracy, %). More realistic domain → difficulties appear ...

ASRU 2009, Merano, Italy

Faces → Facial Features → Region of Interest

From faces to facial features (eyes, mouth, etc):

Similar to face detection. Score *individual* facial feature *templates* by LDA, DFFS, GMMs, etc.

Region-of-interest (ROI):

- Assumed to contain "all" visual speech information.
- Typically, a rectangle containing mouth + lower face.
- Appropriately normalized.

STUDIO

AUTOMOBILE

Face Detection – ROI Extraction (II)

• ... or use cascade of weak classifiers (AdaBoost):

- Face detection (red box).
- Seven facial features (green).
- ROI extraction is based on 3 most reliable facial features.

Facial Feature	Acc. (%)
Left Eye	87%
Nose	<mark>81%</mark>
Top Mouth	79%
Center Mouth	81%
Lower Mouth	73%
Left Mouth	87%
Chin	63%

Face Detection – ROI Extraction (III)

• ... or use image processing techniques such as:

- Motion estimation.
- Color processing.
- Image segmentation.
- Face geometry heuristics.

(b) Color Thresholded Image

Example from Kumar et al., 2007

<u>Region-of-Interest → Visual Features</u>

Three types of approaches to feature extraction:

Video pixel (appearance) based features:

- Lip contours *do not* capture oral cavity information!
- Use compressed representation of mouth ROI instead.
- E.g.: DCT, PCA, DWT, whole ROI.

Lip- and face-contour (shape) based:

- Height, width, area of mouth.
- Moments, Fourier descriptors.
- Model based (statistical or geometrical).

Joint shape and appearance features:

Active appearance models.

Extraction is typically followed by feature **post-processing**:

- Intra-frame + inter frame LDA/MLLT for better within and across frame discrimination.
- ... or inclusion of first and second order derivatives.
- Feature normalization (FMN).
- **Up-sampling** for synchronization to audio feature extraction rate (25, 30 \rightarrow 100 Hz).

Appearance Based Feature Selection

- Among appearance-type visual features, DCT coefficients are typically used for example extracted from 64 x 64 pixel ROI.
- This gives rise to large number of features. How to select the appropriate ones?

Appoaches:

- *Energy based* \rightarrow Select high energy coefficients (baseline approach).
- LDA \rightarrow high input dimensionality, stability problems.
- Variance \rightarrow somewhat worse performance than energy based schemes.
- *Mutual information (MI)* \rightarrow promising scheme, but computational problems.
 - Select DCT features x that *maximize MI wrt speech classes c*.
- Disregard even-column features (due to mouth *symmetry*) and use above schemes.

MI / energy values of 4096 DCT coefficients over training data:

Visual Features – Shape Based Approach

Shape based features represent speech information using lip contour information.

Require "expensive" lip-tracking algorithms, applied within the ROI, using:

• <u>Snakes</u> (Kass et al., 1988):

Elastic curve defined by control points.

Deformable templates (Yuille et al., 1989):

Geometric model. Typically two or more *parabolas* are used.

- Active shape models (Cootes, Taylor, Cooper, Graham, 1995):
 - A <u>PCA</u> model of lip contour point coordinates is obtained.

 <u>Active appearance models</u> (AAMs- Cootes et al.,'00): In addition to shape, it also builds <u>face texture PCA</u>.

ASM based tracking

AAM modes trained on IBM data

Feature Comparisons

- Comparisons are based on *single-subject*, *connected-digit* ASR experiments.
- Appearance- are better than shape-based features:
- Comparisons of various appearance-based features

Challenges in Non-Ideal Data

- Frame rate decimation: Limit of acceptable video rate for automatic speechreading is 15 Hz.
- Video noise: Robustness to noise only in a matched training/testing scenario.

■ <u>Challenging visual domains</u>: Face detection accuracy decreases → Word e

Word error rate increases.

2009.12.16

ASRU 2009, Merano, Italy

- Robustness to such variability is an issue.
- Similar in nature to problems in speech...
- One example is head-pose variation. How to go about statistical modeling?
 - Use *pose-specific* visual speech *models*.
 - Throw all pose data into the same "cooking pot" "single speech model fits all".
 - Do this, but at some "pose-normalized" space.
- For the latter, one can estimate a linear regression matrix, W, from undesirable pose-space X (profile) to desirable pose-space T (frontal).

Difference in ASR performance between frontal and profile views.

1. Introduction:

- Motivation.
- Audio-visual speech technologies.
- Potential applications.

2. Audio-visual speech components with emphasis on ASR:

- Data resources.
- Visual feature representation for speech applications.
- Audio-visual combination (fusion).
- 3. Other audio-visual speech technologies:
 - Speech synchrony.
 - Speech enhancement.
 - Speech inversion.
 - Speaker recognition.
 - Speech synthesis.

4. Concluding Remarks.

- Summary.
- Acknowledgements.

Audio-Visual Fusion for ASR

Audio-visual ASR:

- **Two** observation streams. Audio, $\mathbf{O}_A = [\mathbf{o}_{t,A} \in R^{d_A}, t \in T]$ Visual: $\mathbf{O}_V = [\mathbf{o}_{t,V} \in R^{d_V}, t \in T]$
- Streams assumed to be at **same rate** e.g., 100 Hz. In our system, $d_A = 60$, $d_V = 41$.
- We aim at *non-catastrophic* fusion: WER($\mathbf{O}_A, \mathbf{O}_V$) $\leq \min[WER(\mathbf{O}_A), WER(\mathbf{O}_V)]$

Main points in audio-visual fusion for ASR:

- Type of fusion:
 - Combine audio and visual info at the feature level (feature fusion).
 - Combine audio and visual classifier scores (decision fusion).
 - Could envision a combination of both approaches (hybrid fusion).
- Decision level combination:
 - Early (frame, HMM state level).
 - Intermediate integration (phone level coupled, product HMMs).
 - ✓ Late integration (sentence level discriminative model combination).
- Confidence estimation in decision fusion:
 - Fixed (global).
 - Adaptive (local).

Examples:

- Feature concatenation (also known as direct identification).
- Hierarchical discriminant features: LDA/MLLT on concatenated features (HiLDA).
- Dominant and motor recording (transformation of one or both feature streams).
- Bimodal enhancement of audio features.

 <u>Decision fusion</u>: Combines two *separate* classifiers (audio-, visual-only) to provide a *joint* audio-visual score. Typical example is the *multi-stream HMM*.

• The multi-stream HMM (MS-HMM):

- Combination at the frame (HMM state) level.
- Class-conditional ($c \in C$) observation score:

$$Score(\mathbf{o}_{AV,t} \mid c) = \Pr(\mathbf{o}_{A,t} \mid c)^{\lambda_{A},t,c} \Pr(\mathbf{o}_{V,t} \mid c)^{\lambda_{V},t,c}$$

$$= \prod_{s \in \{A,V\}} \left[\sum_{k=1}^{K_{s,c}} w_{s,c,k} N_{d_{s}}(\mathbf{o}_{s,t};\mathbf{m}_{s,c,k},\mathbf{s}_{s,c,k}) \right]^{\lambda_{s,t,c}}$$

$$Pr(\mathbf{o}_{a}(t) \mid c)$$

$$Pr(\mathbf{o}_{v}(t) \mid c)$$

- Equivalent to log-likelihood linear combination (product rule in classifier fusion).
- Exponents (weights) capture stream reliability: $0 \le \lambda_{s,c,t} \le 1$; $\sum_{s \in \{A,V\}} \lambda_{s,c,t} = 1$
- MSHMM parameters: $\boldsymbol{\theta} = [\boldsymbol{\theta}_A, \boldsymbol{\theta}_V, \boldsymbol{\lambda}]$, where:

$$\boldsymbol{\theta}_{s} = [(w_{s,c,k}, \mathbf{m}_{s,c,k}, \mathbf{s}_{s,c,k}), c \in C, k = 1, \dots, K_{s,c}]$$
$$\boldsymbol{\lambda} = [\lambda_{A,c,t}, c \in C, t \in T]$$

Andio

Multi-stream HMM parameter estimation:

Parameters [θ_A, θ_V] can be obtained by ML estimation using the EM algorithm.
 <u>Separate estimation</u> (separate E,M steps at each modality):

$$\boldsymbol{\theta}_{s}^{(k+1)} = \arg \max_{\boldsymbol{\theta}_{s}} Q(\boldsymbol{\theta}_{s}^{(k)}, \boldsymbol{\theta}_{s} \mid \boldsymbol{O}_{s}), \text{ for } s \in \{A, V\}$$

Joint estimation (joint E step, M steps factor per modality):

$$\mathbf{\theta}_{s}^{(k+1)} = \arg \max_{\theta_{s}} Q(\mathbf{\theta}_{s}^{(k)}, \mathbf{\theta} | \mathbf{O}), \text{ for } s \in \{A, V\}$$

- Parameters λ can be obtained **discriminatively** discussed later.
- MS-HMM transition probabilities:

Scores are dominated by observation likelihoods.

One can set:
$$\mathbf{a}_{AV} = \mathbf{a}_A$$
, or $\mathbf{a}_{AV} = diag(\mathbf{a}_A^{\mathrm{T}}\mathbf{a}_V)$,
where $\mathbf{a}_s = [\Pr_s(c | c'), c, c' \in C]$

- Integration model is <u>equivalent to the product HMM</u> (Varga and Moore, 1990).
 - Product HMM has "<u>composite</u>" (audio-visual) states: $\mathbf{c} = \{c_s, s \in S\}, i.e., \mathbf{c} \in C^{|S|}$
 - Thus, state space becomes larger, e.g., |C|x|C| for a 2-stream model.
 - Class-conditional observation probabilities can follow the MS-HMM paradigm, i.e.:

Score
$$(\mathbf{o}_{AV,t} | \mathbf{c}) = \prod_{s \in S} \Pr(\mathbf{o}_{s,t} | c_s)^{\lambda_{s,t,c}}$$

- If tied, the observation probabilities have **same number** of parameters as state-synchronous MS-HMM.
- Transition probabilities may be more. Three possible models:

- Late integration <u>advantages</u>:
 - Complete asynchrony between the stream observation sequences.
 - No need for same data rate between the streams.
- General implementation:
 - ✓ In **cascade** fashion, by rescoring of n-best sentence lists or lattice word-hypotheses.
 - Thus, real-time implementation is not feasible.
- Typical example: Discriminative model combination (DMC).
 - ✓ For each utterance, use audio to obtain n-best list: $\{\mathbf{h}_1, \mathbf{h}_2, ..., \mathbf{h}_n\}$
 - ✓ Force-align each hypothesis phone sequence $\mathbf{h}_i = \{c_{i,1}, c_{i,2}, ..., c_{i,N_i}\}$ per modality s into: $[t_{i,j,s}^{\text{start}}, t_{i,j,s}^{\text{end}}]$
 - ✓ Then rescore:

$$\Pr[\mathbf{h}_{i}] \propto \Pr_{\mathrm{LM}}(\mathbf{h}_{i})^{\lambda_{\mathrm{LM}}} \prod_{s \in S} \prod_{j=1}^{N_{i}} \Pr(\mathbf{o}_{s,t}, t \in [t_{i,j,s}^{\mathrm{start}}, t_{i,j,s}^{\mathrm{end}}] | c_{i,j})^{\lambda_{s,c_{i,j}}}$$

All weights are discriminatively trained to minimize WER in a held-out set.

AVASR: Fusion Results (I)

- 50-subjects,
 connected-digits
 database in ideal
 environment.
- Product HMM fusion is superior to state-synchronous fusion.
- Effective SNR gain: 10 dB SNR.
- [Potamianos et al., 2003]

AVASR: Fusion Results (II)

Summary of AV-ASR results for large-vocabulary continuous speech (**LVCSR**).

- Speaker-independent training (239 subj.) testing (25 subj.).
- 40 hrs of data.
- **10,400**-word vocabulary.
- 3-gram LM.
- Additive noise at various SNRs.
- Matched training/testing.
- 8 dB effective SNR gain using hybrid fusion.

[Potamianos et al., 2003]

AVASR Results

- Office and automobile environments (challenging) vs. studio data (ideal).
- Feature fusion hurts in challenging domains (clean audio).
- Relative improvements due to visual information diminish in challenging domains.
- Results reported in WER, %.

[Potamianos et al. 2003]

Stream Reliability Modeling for Fusion

- We revisit the MS-HMM framework, to discuss weight (exponent) estimation.
- Recall the MS-HMM observation score (assume 2 streams):

$$\operatorname{Score}(\mathbf{0}_{AV,t} | c) = \operatorname{Pr}(\mathbf{0}_{A,t} | c)^{\lambda_A,t,c} \operatorname{Pr}(\mathbf{0}_{V,t} | c)^{\lambda_V,t,c}$$

- Stream exponents model reliability (information content) of each stream.
- We can consider:
 - Global weights: Assumes that audio and visual conditions do not change, thus global stream weights properly model the reliability of each stream for all available data. Allows for state-dependent weights.

 $\lambda_{s,c,t} \longrightarrow \lambda_{s,c}$

 <u>Adaptive weights</u> at a <u>local</u> level (<u>utterance</u> or <u>frame</u>): Assumes that the environment varies locally (more practical). Requires stream reliability estimation at a local level, and mapping of such reliabilities to exponents.

$$\lambda_{s,c,t} \longrightarrow \lambda_{s,t} = f(\mathbf{0}_{s,t'}, s \in \{A,V\}, t' \in [t - t_{\min}, t + t_{\min}]).$$

<u> Fusion – Global Stream Weighting</u>

Stream weights <u>cannot</u> be obtained by <u>maximum-likelihood</u> estimation, as:

$$\mathbf{A}_{s,c} = \begin{cases} 1, & \text{if } s = \arg \max_{s \in \{A,V\}} \mathbf{L}_{s,c,F} \\ 0, & \text{otherwise} \end{cases}$$

where $L_{s,c,F}$ denotes the training set log-likelihood contribution due to the *s*-modality, *c*-state (obtained by forced-alignment *F*).

- Instead, one needs to <u>discriminatively</u> estimate the exponents:
 - Directly minimize WER on a held-out set using brute force grid search.
 - Minimize a function of the misrecognition error by utilizing the generalized probabilistic descent algorithm (GPD)

Fusion – Adaptive Stream Weighting

- In practice, stream reliability varies locally, due to audio and visual input degradations (e.g., noise bursts, face tracking failures, etc.).
- Adaptive weighting captures variations, by:
 - Estimating environment reliabilities.
 - **Mapping** them to stream exponents.
- Stream reliability indicators:
 - Acoustic signal based: SNR, voicing index.
 - **Visual** processing: Face tracking confidence.
 - **Classifier** based stream reliability indicators:
 - ✓ Consider N-best most likely classes for observing $\mathbf{o}_{s,t}$, $c_{s,t,n} \in C$, n = 1, 2, ..., N.
 - N-best log-likelihood difference:

$$L_{s,t} = \frac{1}{N-1} \sum_{n=2}^{N} \log \frac{\Pr(\mathbf{o}_{s,t} \mid c_{s,t,1})}{\Pr(\mathbf{o}_{s,t} \mid c_{s,t,n})}$$

✓ N-best log-likelihood **dispersion**: $D_{s,t} = \frac{2}{N(N-1)} \sum_{n=2}^{N} \sum_{n'=n+1}^{N} \log \frac{\Pr(\mathbf{o}_{s,t} | c_{s,t,n})}{\Pr(\mathbf{o}_{s,t} | c_{s,t,n'})}$ Then estimate exponents as:

$$\lambda_{A,t} = \left[1 + \exp\left(-\sum_{i=1}^{4} w_i \, d_i\right)\right]^{-1}$$

• Weights *w_i* are estimated using MCL or MCE on basis of frame error [Garg et al., 2003].

1. Introduction:

- Motivation.
- Audio-visual speech technologies.
- Potential applications.

2. Audio-visual speech components with emphasis on ASR:

- Data resources.
- Visual feature representation for speech applications.
- Audio-visual combination (fusion).

3. Other audio-visual speech technologies:

- Speech synchrony.
- Speech enhancement.
- Speech inversion.
- Speaker recognition.
- Speech synthesis.
- 4. Concluding Remarks.
 - Summary.
 - Acknowledgements.

- So far, we have discussed the *two* main *components* of AV speech processing, as applied to the problem of *audio-visual ASR*.
- These components are *shared* & are relevant to a number of audio-visual speech processing applications, as discussed in the Introduction.
- We briefly discuss a few of them:
 - Speech *synchrony* detection.
 - Speech enhancement.
 - Speech inversion.
 - Speaker *identification / verification*.
 - Speech *activity detection*.
 - Speech synthesis.

اا

- **Goal** is to detect if audio and visual sources are in sync.
- Applications:
 - Biometrics *spoofing detection*.
 - Improve speaker diarization.
 - Speech source localization.

- Typical <u>approaches</u> in literature employ:
 - <u>Mutual information</u> between audio & visual features (Hershey & Movellan, 2000).

$$I(A; V) = \mathbf{E} \log \frac{p(a, v)}{p(a), p(v)} \ge \lambda$$

Hypothesis testing

Construct two classes:

– $_{\mathcal{H}_1}$, AV features (**Z**) in sync.

 $- \mathcal{H}_0$, AV features (**Z**) out of sync.

Log-likelihood Ratio Test (LRT):

$$LLR = \log \frac{p(Z; \mathcal{H}_1)}{p(Z; \mathcal{H}_0)} \ge \lambda$$

Concise overview in: Rua et al. 2009; Bredin & Chollet 2007.

- Above approaches consider AV features to be *statistically independent*.
- An alternative approach has been suggested by Kumar et al., 2009, termed <u>bimodal linear</u> prediction coefficient (BLPC) approach.
 - Captures the auto-correlation and cross-correlation through meaningful parameters.
 - Jointly models feature evolution in time.
- Three models considered:

- **BLPC-1**:
$$a[n] \approx \hat{a}[n] = \sum_{i=1}^{N_a} \alpha[i] a[n-i] + \sum_{j=0}^{N_v} \beta[j] v[n-j]$$

- **BLPC-2**:
$$a[n] \approx \hat{a}[n] = \sum_{i=1}^{N_a} \alpha[i]a[n-i] + \sum_{j=-N_v}^{N_v} \beta[j]v[n-j]$$

- **BLPC-3**:
$$a[n] \approx \hat{a}[n] = \sum_{i=-N_a, i \neq 0}^{N_a} \alpha[i]a[n-i] + \sum_{j=-N_v}^{N_v} \beta[j]v[n-j]$$

- If AV in sync, then: $\beta[j] \neq 0, \forall j$ if not, then: $\beta[j] = 0, \forall j$
- Coefficients are computed by MMSE.
- Method applied on AV feature pairs obtained after canonical correlation analysis (CCA).

Audio Visual Synchrony Detection (III)

 Some AV synchrony detection results on CMU data:

EER based on audio vs. visual coefficient distance.

<u>Audio-Visual Speech Enhancement – Overview</u>

Main idea:

- Recall that the audio and visual features are <u>correlated</u>. E.g., for 60-dim audio features (o_{At}) and 41-dim visual (o_{Vt}):
- Thus, one can hope to exploit visual input to <u>restore</u> acoustic information from the video and the corrupted audio signal.
- Enhancement can occur in the:
 - Signal space (based on LPC audio feats.).
 - ✓ Audio <u>feature</u> space (discussed here).

Main techniques:

- <u>Linear</u> (min. mean square error est.).
- Mon-linear (neural nets., CDCN).
- <u>Result</u>: Better than audio-only methods.

Linear Bimodal Enhancement of Audio (I)

Paradigm:

Training on noisy AV features

$$\mathbf{o}_{AV,t} = [\mathbf{o}_{A,t}, \mathbf{o}_{V,t}], \text{ and clean AU } \mathbf{o}_{A,t}^{(C)}, t \in T.$$

✓ Seek linear transform P, s.t:

$$\mathbf{o}_{A,t}^{(E)} = \mathbf{P} \, \mathbf{o}_{AV,t} \approx \mathbf{o}_{A,t}^{(C)}, \ t \in T.$$

- Can <u>estimate</u> P by minimizing the <u>mean square error</u> (MSE) between $\mathbf{o}_{A,t}^{(E)}, \mathbf{o}_{A,t}^{(C)}$.
 - ✓ Problem <u>separates</u> per audio feature dimension ($i=1,...,d_A$):

$$\mathbf{p}_{i} = \arg \max_{\mathbf{p}} \sum_{t \in T} [o_{A,t,i}^{(C)} - \langle \mathbf{p}, \mathbf{0}_{AV,t} \rangle]^{2}, i = 1,...,d_{A}$$

✓ Solved by d_A systems of <u>Yule-Walker</u> equations:

$$\sum_{j=1}^{d} \left[\sum_{t \in T} o_{AV,t,j} o_{AV,t,k} \right] p_{i,j} = \sum_{t \in T} o_{A,t,i}^{(C)} o_{AV,t,k}, \quad k = 1, ..., d$$

Examples of audio feature estimation using bimodal enhancement (additive speech babble noise at 4 dB SNR): Not perfect, but better than noisy features, and helps ASR!

Linear enhancement and ASR (digits task – automobile noise):

- Audio-based enhancement is inferior to bimodal one.
- ✓ For mismatched HMMs at low SNR, AV-enhanced features outperform AV-HiLDA feature fusion.
- ✓ After HMM retraining, HiLDA becomes superior.
- ✓ Linear enhancement creates within-class feature correlation MLLT can help.

- Codebook-dependent cepstral normalization (CDCN):
 - A feature-space technique for robust ASR.
 - Approximates the non-linear effect of noise on clean features by a piece-wise constant function, defined in terms of a "codebook" $\{f_{A,k}\}$:

$$\mathbf{o}_{A,t}^{(E)} = \mathbf{o}_{A,t} - \sum_{k=1}^{K} f_{A,k} \operatorname{Pr}(k \mid \mathbf{o}_{A,t})$$

- Codebooks are estimated by minimizing MSE over audio data:

$$f_{A,k} = \frac{\sum_{t \in T} (\mathbf{0}_{A,t} - \mathbf{0}_{A,t}^{(C)}) \operatorname{Pr}(k \mid \mathbf{0}_{A,t}^{(C)})}{\sum_{t \in T} \operatorname{Pr}(k \mid \mathbf{0}_{A,t}^{(C)})}$$

CDCN can be extended to use audio-visual data instead (AV-CDCN):

$$\mathbf{o}_{A,t}^{(E)} = \mathbf{o}_{A,t} - \sum_{k=1}^{K} f_{A,k} \operatorname{Pr}(k \mid \mathbf{o}_{AV,t})$$

where codebook posteriors $\{\Pr(k|\mathbf{o}_{AV,t})\}_k$ are estimated by EM on AV data.

Non-Linear Bimodal Enhancement of Audio (II)

RESULTS:

- ASR performance using AVCDCN vs. audio-only and AV-HiLDA features.
- Task: Connected digits, HMMs trained on clean audio.
- Various codebook sizes are compared in AVCDCN.
- AVCDCN outperforms feature fusion!

الما

Audio-Visual Speech Inversion (I)

- Goal is to estimate vocal tract geometry and dynamics from observed speech.
- Problem is of interest to speech synthesis & coding, ASR, language tutoring, etc.
- This is an ill-posed inverse problem.
- Visual channel can help since some of the articulators are visible.

Typical approach (Yehia et al., 1998) – observations **y**, articulatory parameters **x**:

where **W** is estimated with MSE.

- Better perfomance is achieved with piecewise linear models W depends on HMM subphonetic states.
- Smoothing of recovered trajectories is often employed.

• Results (Katsamanis et al., 2009):

- In case of **<u>bimodal data</u>**, the following <u>**3** *information streams*</u> can be utilized:
- Sound audio based speaker recognition
- Static video frames face recognition
- Mouth ROI video sequences visual speech based speaker recognition.

<u>Examples</u> of fusing two or three single-modality speaker-recognition systems:

Audio + visual-labial (IBM:Chaudhari et al.,03)

- ID-error: A: 2.01, V: 10.95, AV: 0.40 %
- VER-EER: A:1.71, V: 1.52, AV: 1.04 %

Audio +visual-face (IBM: Maison et al., 99)

- D-error-*clean*: A: 7.1, F: 36.4, AF: 6.5
- ID-error-noisy: A:49.3, F: 36.4, AF: 25.3 %

Audio + visual + face (Dieckmann et al., 97):

ID-err: A: 10.4, V: 11.0, F: 18.7, AVF: 7.0 %

Audio-Visual Speech Synthesis (I)

- The *goal* is to automatically generate:
 - Voice and facial animation from arbitrary *text*; or:
 - Facial animation from arbitrary **speech**.

Potential applications:

- Human communication and perception.
- Tools for the hearing impaired.
- Spoken and multimodal agent-based user interfaces.
- Educational aids.
- Entertainment (synthetic actors).
- For example:
 - A view of the face can improve intelligibility of both natural and synthetic speech significantly, especially under degraded acoustic conditions.
 - Facial expressions can signal emotion, add emphasis to the speech and support the interaction in dialogue.

- Model-Based (or knowledge-based)
 - Face is modeled as a 3D object
 - Control parameters deform the 3D structure using
 - ✓ Geometric
 - Articulatory
- ≻ models
- Muscular
- Gained popularity due to MPEG-4 facial animation standard
- Image or Video-Based
 - Segments of 2D videos of a speaker are
 - Acquired
 - Processed
 - Concatenated

Boundaries are blurry

<u> Audio-Visual Speech Synthesis (III) – Concatenative Approach</u>

Basic components of this approach are similar to the AV-components discussed earlier.

- Analysis of database segments (images or video snippets).
 - Extracts shape or appearance features to allow transition cost computation in concatenation.
- Synthesis stage:
 - Uses dynamic programming approach (Viterbi) to find minimum cost path and "stich" together the best possible image/video snippets.

1. Introduction:

- Motivation.
- Audio-visual speech technologies.
- Potential applications.

2. Audio-visual speech components with emphasis on ASR:

- Data resources.
- Visual feature representation for speech applications.
- Audio-visual combination (fusion).

3. Other audio-visual speech technologies:

- Speech synchrony.
- Speech enhancement.
- Speech inversion.
- Speaker recognition.
- Speech synthesis.

4. Concluding Remarks.

- Summary.
- Acknowledgements.

AV Speech Processing – Conclusions

- Discussed the motivation & benefits of visual information for various speech technologies.
- Audio-visual speech processing requires visual feature extraction & audio-visual fusion.
- For visual processing, appearance-based visual features seem preferable.
 - Achieve better performance.
 - Are computationally inexpensive.
 - Robust to video degradations.
 - Require approximate only face/mouth tracking
- For audio-visual integration, decision fusion approaches are preferable:
 - Draws from the classifier combination paradigm.
 - Allows direct modeling of the reliability of each information stream
 - Offers a mechanism to directly model audio-visual asynchrony at various levels.

Discussed additional AV speech applications.

- Synchrony detection.
- Speech enhancement.
- Speech inversion.
- Speaker recognition.
- Speech synthesis.
- **Experimental results** demonstrate several benefit of visual modality to above technologies.

Current Trends / Open Problems

- Trends:
 - Interest shifting towards realistic environments (meetings, broadcasts, automobiles), including multi-sensory environments with multi-speaker interaction.
 - Interest extends beyond ASR problem.
 - Database collection efforts by many sites.

Challenges:

- Pose modeling, compensation; pose invariant appearance visual features.
- Robust visual feature extraction for unconstrained visual domains; invariance to environments.
- Feature representation, selection.
- Fusion functional, reliability modeling, asynchronous integration within / across modalities.
- Still lagging common benchmarks in the community.

- Former AT&T colleagues: Eric Cosatto, Hans Peter Graf.
- Former IBM colleagues: Stephen M. Chu, Jonathan Connell, Sabine Deligne, Jing Huang, Giridharan Iyengar, Vit Libal, Etienne Marcheret, Chalapathy Neti, Michael Picheny, Larry Sansone, Andrew Senior, Roberto Sicconi.
- Former IBM interns: Ashutosh Garg, Roland Goecke, Guillaume Gravier, Jintao Jiang, Kshitiz Kumar, Patrick Lucey, Patricia Scanlon.
- Other: Petar S. Aleksic, Aggelos K. Katsaggelos, Iain Matthews, Juergen Luettin, Petros Maragos, George Papadopoulos.
- Former funding: IBM AR program, EU FP6 projects CHIL & NETCARITY through IBM Research Participation.
- Current support by EU FP7-PEOPLE-RG project AVISPIRE.

