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Abstract—In this paper, we survey some central issues
in the historical, current, and future landscape of statistical
machine translation (SMT) research, taking as a starting point
an extended three-dimensional MT model space. We posit a
socio-geographical conceptual disparity hypothesis, that aims to
explain why language pairs like Chinese-English have presented
MT with so much more difficulty than others. The evolution
from simple token-based to segment-based to tree-based syntactic
SMT is sketched. For tree-based SMT, we consider language bias
rationales for selecting the degree of compositional power within
the hierarchy of expressiveness for transduction grammars (or
synchronous grammars). This leads us to inversion transductions
and the ITG model prevalent in current state-of-the-art SMT,
along with the underlying ITG hypothesis, which posits a
language universal. Against this backdrop, we enumerate a set of
key open questions for syntactic SMT. We then consider the more
recent area of semantic SMT. We list principles for successful
application of sense disambiguation models to semantic SMT,
and describe early directions in the use of semantic role labeling
for semantic SMT.

I. INTRODUCTION

Ever since the successes of the neo-statistical machine
translation movement began to reorientate the field back
toward quantitative learning approaches some twenty years
ago, tensions—real and imagined—have persisted between
methodologies that prioritize statistical modeling versus struc-
tural, symbolic modeling.

Statistical machine translation, or SMT, resurrected the
classic ideas of [Weaver (1949) in positing a noisy channel
process for modeling translation, while exploiting a half-
century of vast advances in computing hardware. To a fresh
generation of NLP researchers, SMT offered an irresistable trio
of attractions long enjoyed by the speech recognition and pat-
tern recognition communities, and painfully absent in the NLP
methodology of the time: (a) an empirical research process
grounded in the scientific method, (b) numerically weighted
decision models well suited for integrating indirect partial
evidence from multiple disparate clues, often grounded in
Bayesian foundations, and (c) machine learning techniques for
breaking the knowledge acquisition bottleneck, often grounded
in information theory.

Yet even as we “neo-stats” have come to dominate
machine translation research in the intervening years, oversim-
plistic representational assumptions continue to dog most SMT
models. This yields mistranslations that, while superficially

fluent, are often jarringly inadequate. The most cursory error
analysis instantly reveals a preponderance of obvious syntactic
and semantic errors. Language pairs that are very different,
like Chinese and English, are particularly sensitive to such
problems.

It has proven intriguingly difficult to avoid throwing
the baby out with the bath water. The careful training and
optimization of statistical MT models makes them remarkably
counterbalanced: attempts at incorporating syntactic or seman-
tic models so as to improve translation adequacy tend to meet,
more often than not, with degraded fluency. At the same time,
MT evaluation metrics such as BLEU (Papineni et al.l 2002)
that have been dominant in recent years reward fluency at least
as highly as adequacy. This creates little practical incentive to
invest time attacking the underlying problem compared with,
say, fine-tuning model parameters, or engineering ever larger
systems capable of memorizing still more hundreds of millions
of phrase translations.

Nevertheless, many perceived differences between statis-
tical and symbolic translation modeling are illusory. A history
of MT paradigms in |Wul (2005) factors out some of the
artificial distinctions by plotting various approaches in a three-
dimensional space of possible machine translation models,
shown in Figure |1} Irrespective of the extent to which a model
employs statistics (the first dimension), several design choices
must be made.

One design choice (the second dimension) is when the
inductive steps—generalization, adaptation, learning—are per-
formed. While this might appear to be a purely implementa-
tional choice if we were to disregard issues of computation
time and space, the reality is that computation is always
resource-bounded, so this design choice actually produces
different models. In MT models that are more example-
based, induction is largely done at runtime during testing, by
adapting fragments of memorized sentence translations during
translation decoding. In MT models that are more schema-
based, induction is mainly performed in advance, by capturing
abstract generalization patterns via either automatic training or
manual construction.

Another design choice (the third dimension) is the degree
to which the representational foundation allows for compo-
sitional structures or rules, versus being restricted to solely
manipulating “flat” chunks in the form of lexical strings or
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Fig. 1. Three independent dimensions of MT model space.

segments. The principle of compositionality lies at the heart
of syntactic modeling. Yet even today, much of SMT still
employs flat lexical modeling—or only the degenerate case of
compositionality in its purely flat form, where lexical strings
hold segments variously referred to as compound words,
phrases, collocations, or multiword expressions—largely out
of concern for the computational complexity of translation
decoding and training. A key question, then, is how much
compositional power to allow, in order to adequately capture
the necessary generalization patterns, but without admitting
excessive computational complexity.

To these design choices we will add one more: the extent
of semantic modeling. The most glaring errors made by
SMT systems arise from current inadequacies in modeling
of the context within which lexical segments are translated.
Of particular interest are recent lexical semantics models for
word sense disambiguation and semantic role labeling, which
attack problems that are largely orthogonal to those addressed
by current SMT architectures. While work on syntax for SMT
has had since Wul (1995a)) to develop and now is extremely
active—see for example Wu and Chiang| (2007), |Chiang and
Wu| (2008), and [Wu and Chiang| (2009)—serious work on
semantics for SMT began much more recently (Carpuat and
Wul 2005) and is still at a much earlier stage.

Our consideration of these issues is set against the back-
ground of one of the more frustrating puzzles of the day: why
are some language pairs—like Chinese and English—so much
more resistant to machine translation than others? The US
Defense Language Institute classifies both Arabic and Chinese
in Group 1V, the most difficult languages for English speakers
to learn, and both Semitic and Sino-Tibetan languages evolved
from separate origins as Indo-European. Yet the much more
recent efforts on Arabic-English very quickly leapfrogged
SMT accuracy for Chinese-English. Wul (2008)) posits a socio-
geographical conceptual disparity hypothesis: the Arabic
and European worlds shared vast borders with a long history of
direct trade and rule, unlike the Far East and Europe. Far more
borrowing of concepts has occurred over the ages between
Arabic and European languages, than between Chinese and
European languages. Thus, there is a much higher chance that
an idea expressed by an Arabic phrase can easily be translated
into English via direct word/phrase substitution, because each
component concept translates easily.

Regardless, our discussion below largely applies to all

languages. But concrete Chinese-English examples illumi-
nate the issues strikingly well, due to their vast differences.
Chinese-English MT is an acid test; breaking through the
current plateau in Chinese-English MT quality will demand
that SMT incorporates much richer representational models to
bridge the gap.

II. SyntacTIiIC SMT: WHAT'S IN A WORD?

The past and future evolution of syntactic SMT ap-
proaches is most clearly discerned by contrasting token-based,
segment-based, and tree-based models, respectively corre-
sponding to the design choice between lexical, collocational,
and compositional representations.

A. Token-based models

The simplest lexical SMT models, notably the IBM
models of Brown et al.| (1988), manipulate single lexical to-
kens using flat, non-compositional permutation models. These
models are often referred to as being “word-based” —a rather
ill-defined concept, given the murky status of “words” in
languages written with no whitespace delimiters, like Chinese,
where nearly every character can be meaningfully used by
itself. The unfortunate nomenclature arose as a historical
artifact of an early focus on Western European languages,
particularly English and French.

The key distinction of this class of models is that the al-
gorithms and translation lexicons make no attempt to translate
via lexicon lookup for any segments longer than one single
token.

The limitations of flat single-token approaches quickly
become painfully apparent when applied to languages like
Chinese, where no obvious whitespace boundaries can be used
to delimit “words” . Consider, for example, the following
sentence pair:

Chi  EELRHKE & A W ER] 115t
Gloss authority will to financial secretary hold responsibility.
Eng  The authority will be accountable to the financial secretary.

Two approaches toward dealing with the Chinese
string's lack of whitespace are possible—token-based versus
segment-based models—and they often produce confusing
conflicts of perspective and terminology.

The token-based approach assumes some heuristic pre-
processor will chop the input Chinese string of characters
into a sequence of multi-character “word” tokens such as
1 57 (fuzé, roughly accountable). Under this approach, the
heuristic preprocessing is typically called “word tokeniza-
tion” , reflecting the assumption that the resulting chunks are
atomic tokens that will later be translated by lexicon lookup.
The task of Chinese-English translation is then shoehorned
into the same token-based SMT models developed earlier for
European language pairs.

This strategy forces premature tokenization decisions that
are often arbitrary, with consequences for translation accuracy:
incorrect tokenization decisions lead to incorrect or suboptimal
lexical translations. For example, tokenizing 1 i into a
single token prevents it from being better translated in certain



contexts as two separate tokens, 1 (fii, roughly hold or take
in this context) and ©7 (z¢é, roughly responsibility), yielding
hold responsibility or take responsibility.

B. Segment-based models

The alternative segment-based approach is less restric-
tive. Instead of prematurely forcing tokenization decisions,
we simply recognize all individual Chinese characters as
tokens. After all, individual Chinese characters can be used
and translated meaningfully—just like “words” in European
languages. When working with SMT for European languages,

“words” are the atomic units that it would be unreasonable
for SMT to hypothesize breaking into smaller pieces to be
translated individually. Since it is almost always reasonable
to hypothesize translating single Chinese characters, they are
the closest analog to the atomic units considered “words” in
European languages.

We then employ a collocational or phrasal translation
lexicon, in which multi-token segments can be translated as
a compound unit. Thus the lexicon simultaneously includes
ffi/hold, 5i/responsibility, and 1 5i/accountable—just like in
traditional translation dictionaries.

Under this approach, the decision as to what granularity
of strings to chop the input Chinese string of characters
into is typically called “word segmentation” rather than

“word tokenization” . This reflects the perspective that the

“words” being translated by lexicon lookup are segments
often containing multiple tokens. (The term “segment” implies
multiple tokens—compare the use of terms like “sentence
segmentation” , “paragraph segmentation” , or “clause seg-
mentation” , which are not referred to as “tokenization”
since sentences, paragraphs, and clauses generally consist of
multiple tokens.)

The key principle that distinguishes segment-based mod-
els is that they defer segmentation decisions until bilingual
optimization decisions can be made at translation alignment or
decoding time, instead of heuristically committing in advance
to rigid boundaries during some monolingual preprocessing
phase. This is called translation-driven segmentation (Wu,
1997) and is the core assumption underlying all phrasal trans-
lation models, including most example-based MT (EBMT)
models (Nagao) |1984) and all phrase-based SMT (PBSMT)
models (Och et all [1999).

Translation-driven segmentation is a key characteris-
tic of the tree-based SMT models where it first devel-
oped—particularly the inversion transduction grammar
(ITG) models as in [Wu| (1997) and [Wu and Wong| (1998),
of which recent incarnations include |Chiang| (2007), |Cherry
and Lin| (2007)), Xiong et al.| (2006), Xiong et al.| (2009), or
Haghighi et al.| (2009) for example.

The success of translation-driven segmentation ap-
proaches over earlier single token-based models has not been
limited to translation of Chinese. Even for European lan-
guages, lexicographers have long since given up any pretense
that “words” are merely those strings delimited by whitespace.
A huge proportion of entries in any English lexicon (or
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(c) English-Chinese character/word/phase alignment

The Authority will be accountable to the Financial Secretary.
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translation lexicon) are composite “words” variously referred
to as compound words, phrases, collocations, or multiword
expressions—flip to any random page to see entries like each
other, eager beaver, Eagle Scout, eared seal, earth science,
earth station, east by north, Easter egg, Eastern Standard
Time, etc.—few of which can be reliably translated solely by
their individual space-delimited tokens.

Machine translation models go further. Even segments
that a lexicographer would not recognize are still often needed
in the phrasal translation lexicon. For instance, our earlier
example 1 77 can also translate to two English words, be
accountable, as in the segment-based alignment depicted in
Figure c). Many models do not even require the phrasal
segments to correspond to complete linguistic constituents,
relying instead on a language model to improve the gram-
maticality of the output translation.

Despite the improvement in representational power over
token-based models, a phrasal segment consisting of multiple
tokens still represents only a single, non-recursive level of
composition—too limited to effectively model most syntactic
patterns and constraints. Ungrammatical outputs are a frequent
product of this class of models.



C. Tree-based models

To be able to model true compositional structure and
properly capture long-distance dependencies, we need nested,
recursive levels of composition. This was introduced to SMT
in the stochastic inversion transduction grammar (ITG)
models of 'Wul (1995a) and (Wu (1997), a recent instantiation
of which is the hierarchical phrase-based translation model of
Chiang| (2007)).

The key distinction of most state-of-the-art tree-based
models is that a single transduction grammar simultaneously
models two languages. A few concepts are useful to define.

A transduction is a set of sentence translation pairs or
bisentences—just as a language is a set of sentences. The set
defines a relation between the input and output languages.

In the generative view, a transduction grammar generates
a transduction, i.e., a set of bisentences—just as an ordinary
(monolingual) language grammar generates a language, i.e.,
a set of sentences. In the recognition view, alternatively, a
transduction grammar biparses or accepts all sentence pairs of
a transduction—just as a language grammar parses or accepts
all sentences of a language. And in the transduction view, a
transduction grammar transduces (translates) input sentences
to output sentences.

With such models, alignment becomes part of the bipars-
ing process. Given a sentence pair, biparsing it produces the
alignment dictated by the full biparse tree.

Larger segments are translated via composition of the
translations of smaller segments. This composition process is
recursive and stochastic. Figure d) shows how our earlier
sentence pair example can be biparsed (or transduced or
generated) by a single biparse tree. At each node of the parse
tree, choices are made about how the child nodes are to be
permuted for the translation. For instance, the horizontal bar at
the V” node is a shorthand indicating that the Chinese segment
11 77 generated by the left child be accountable/$ 5 should
be inverted with the Chinese segment [A]Jlf (7] generated by
the PP right child (corresponding to to the financial secretary).
The same nesting and permutation information can also be
visualized with the matrix directly under the parse tree.

Whenever permutations come into the picture, expo-
nential time and space complexities cannot be far behind.
With compositional tree-based models, we now have the
stochastic transduction grammar machinery to properly model
long-distance dependencies. But if they come with infeasible
computational complexities, we are no better off than before.
This was one of the main factors that slowed widespread
adoption of syntactic modeling into SMT. How can we gain
sufficient compositional modeling power without excessive
computational complexity?

III. Syntactic SMT: How MUCH COMPOSITIONAL POWER?

To address the question of how much compositional
power to aim for in a tree-based model, it is useful to return
to one of the fundamental principles of machine learning—the
critical role of the inductive bias inherent in the assumptions
of any learning model (Mitchell, |1997). The inductive bias

consists of all a priori assumptions outside the training data.
Without an inductive bias, no learning can be rationally
justified. There are two main sources of inductive bias. A
search bias is a preference for certain hypotheses over others;
this follows from the a priori definition of an algorithm's
search strategy and objective criteria, and does not place
any hard restriction on what hypotheses can be enumerated in
the course of the search. On the other hand, a language bias
is a categorical restriction on the set of hypotheses that can
be considered; this follows from the a priori definition of the
search space. All learning systems intrinsically possess both
search biases and language biases.

How, then, should we determine which inductive biases
to embody within a model's language biases, as opposed to
its search biases? All other things being equal, it is more
efficient to formulate an inductive bias as a language bias,
rather than a search bias. If we are fairly certain that some
class of hypotheses will never be correct or optimal, then
implementing a search bias that searches and then rejects those
hypotheses clearly cannot be more efficient than forming an
a priori language bias that eliminates those hypotheses from
the search space in the first place.

However, the most widespread token-based models
(IBM models) and segment-based models (phrase-based and
example-based MT models) focus almost entirely on search
biases. Their underlying generative models allow all permu-
tations of the lexical translation units (tokens or segments),
which is not much of a language bias. What few language
biases they do employ—primarily finite window sizes for
reordering, such as the “IBM constraints” —tend to be ei-
ther relatively weak, or excessively harsh on long-distance
dependencies. This places an extremely demanding burden on
the heuristics implementing the search bias—resulting either
in very inefficient search that wastes too much time in the
wrong hypothesis regions, and/or very inaccurate search that
fails to find correct or optimal hypotheses in the allotted time.

One major advantage of formal transduction models is
that they offer a mechanism to impose strong language biases.
But allowing biparse trees of nodes that generate arbitrary
permutations of many children is a rather weak and ineffective
language bias. It turns out there is a hierarchy of equiva-
lence classes for transductions—just as there is Chomsky's
hierarchy of equivalence classes for languages. Just as in
the monolingual case, there is a tradeoff between generative
capacity and computational complexity. Figure |3| summarizes
both hierarchies, where the more expressive classes of trans-
ductions are orders of magnitude more expensive to biparse
and train. The bilingual hierarchy is anchored on both ends
by two familiar classes of transductions in widespread use for
decades in many areas of computer science and linguistics.

At the upper end, we have the well-known equivalence
class of syntax-directed transductions. Syntactic SMT sys-
tems that are entirely based on a pure unrestricted syntax-
directed transduction grammar (SDTG) model (Lewis and
Stearns| (1968)), |Aho and Ullman| (1969), | Aho and Ullman:
(1972))—also recently called synchronous CFG—tend to
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suffer from the weak language bias problem, resulting in
inefficient and/or inaccurate search in training, decoding, or
both. (Traditional rule-based MT models, like programming
language compilers, usually attempt to circumvent such prob-
lems by carefully crafting their SDTGs by hand. Of course,
this also leads to scaling difficulties.)

At the lower end, we have the equivalence class of
finite-state transductions, which are the set of bisentences
generated by some finite-state transducer (FST). It is pos-
sible to use SDTGs (or synchronous CFGs) to describe
finite-state transductions by restricting them alternatively to
the special cases of either “right regular SDTGs” or “left
regular SDTGs” . However, such characterizations overlook
the key point—the equivalence class of finite-state transduc-
tions imposes a strong language bias, making the grammars
orders of magnitude cheaper to biparse, train, and induce than
with syntax-directed transductions—and also more accurate to
induce for appropriate classes of problems.

In between lies the intermediate equivalence class of
inversion transductions, which in recent years has seen wide
use in nearly all state-of-the-art MT systems. The genera-
tive capacity and computational complexity for the inversion
transduction grammar (ITG) class falls in between that of
finite-state and syntax-directed transduction grammars; see
Wu (1997) for detailed analysis of the expressiveness prop-
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Summary comparison of computational complexity for Viterbi and chart (bi)parsing, and EM training algorithms for both monolingual and bilingual

erties of ITGs, which are surprisingly flexible despite their
strong constraints. The following ITG generates the tree from
Figure d), where square brackets are a shorthand for the
straight permutation (0, 1) and angle brackets for the inverted
permutation (1, 0):

S’ — [S /o]

S — | The authority/ %15t V” |

V7 [ willls V]

V' — ( be accountable/f 57 PP )
PP — [to/lF] N ]

N’ — [thele N]

N — [ financial WA BX  secretary/@] ]

As with finite-state transductions, it is possible to use
SDTGs (or synchronous CFGs) to describe inversion trans-
ductions by restricting them alternatively to the special cases
of “binary SDTGs” , “ternary SDTGs” , or “SDTGs whose
transduction rules are restricted to straight and inverted per-
mutations only” .

This means that ITGs are in a sense the closest bilingual
analog of monolingual CFGs. All inversion transductions can
be written in a binary 2-normal form, like the example
grammar above, just as all monolingual context-free languages
can be written in a binary 2-normal form, such as Chomsky
normal form. In contrast, SDTGs (or synchronous CFGs) do
not admit binary 2-normal forms.



It also means that any SDTG (or synchronous CFG) of
binary or ternary rank—i.e., that has at most two or three
nonterminals on the right-hand-side of any rule—is an TG

For example, the numerous systems that employ

“binarized synchronous/ transduction grammars” reduce to
the class of ITGs. One way this is often accomplished in
practice is by applying the binarization algorithm of [Zhang
et al.| (2006). This “down-converts” a less tractable SDTG
(or synchronous CFG) by approximating it with an ITG
that discards any transduction patterns that violate ITG con-
straints? Translation speed and accuracy improve significantly
as a consequence of this expressiveness restriction—a strong
indication of the good fit of the ITG language bias to the do-
main of human language translation. Similarly, any grammar
induced following the hierarchical phrase-based translation
method (Chiang, 2007), which always yields a binary rank
transduction grammar, is an ITG.

A key characteristic responsible for the success of such
models is the strong language bias of inversion transductions,
which makes the grammars orders of magnitude cheaper to
biparse, train, and induce than with SDTGs (or synchronous
CFGs).

This is encapsulated by the ITG hypothesis which posits
a strong language universal constraint: sentence translation
between any two natural languages can be accomplished
within the permutations allowed by ITG expressiveness. The
conjecture that human sentence translations fall within the
space of inversion transductions is analogous to the mono-
lingual hypothesis that sentences of human languages are
context-free—while certain limited classes of constructions
can be found that in principle violate the constraints, these
tend to be restricted cases, statistically rare, and easily handled
via simple preprocessing. An overwhelming proportion of
languages/ transductions are most effectively covered within
efficient CFG and ITG constraints.

Over the years, numerous empirical results have borne
out the ITG hypothesis to a surprisingly large extent, indi-
cating significantly better fit to modeling translation between
many human language pairs—with more efficient and/ or
effective search for alignment as well as translation decoding,
across English, French, Spanish, German, Swedish, Chinese,
Japanese, Arabic, and numerous other languages. A few exam-
ples of these include |Zens and Ney| (2003), |Zens et al.| (2004),
Gildeal (2004), [Wu et al.| (2006)), and [Saers and Wul (2009).

IV. SyntacTic SMT: OPEN QUESTIONS

The success of tree-based models crystallizes a number of
key open questions. While initial work toward each question
has begun, much remains to be answered.

e Language bias of ITGs or SDTGs (synchronous CFGs)?
The bulk of the evidence currently suggests that the space
of inversion transductions is a very good fit to translation

!Just as any SDTG (or synchronous CFG) that is right regular is a finite-
state transduction grammar.

2 As for example is done in ISI systems (Galley et al.| 2006).

3Subject to certain conditions; see [Wu and Fung| (2005) and (Wu, [1997).

Bracketing ITG (Wu 1996; Vogel et al. 2003)
Extended Bracketing ITG (zZens & Ney 2003)
Coarse ITG (Wu 1995)

Linguistic ITG (Wu & Wong 1998)

‘Memorized’ TG (Yamada & Knight 2001)
Collocational TG (wu 1996; Och et al. 1999, 2003)

Fig. 4. Spectrum of generic to specific transduction grammars.

between human languages, and minimizes computational
complexity while improving accuracy of alignment, trans-
lation, and grammar induction (which is why models that
start with SDTGs (or synchronous CFGs) often apply
the ITG binarization method of [Zhang er al| (2006)
to “down-convert” them). But is there an empirically
demonstrable, statistically significant counterargument to
the ITG hypothesis?

Generic or specific transduction grammars? At the most
generic extreme, simple bracketing ITG (BITG or BTG)
models of Wul(1995a), which employ only two syntactic
rules X — [XX]and X — (X X) with a single undiffer-
entiated nonterminal, are used solely for the language bias
from their restrictions on permutations—often referred
to as ITG constraints—and have proven very useful in
many models. But other models employ and/or induce far
larger, more specific transduction grammars, as shown in
Figure |4l For example, detailed linguistic grammars are
used to construct linguistic ITGs in|Wu and Wong| (1998)).
Unsupervised grammar induction or linguistically con-
structed grammars? Closely related to the previous ques-
tion, unsupervised approaches often begin with BITG
models since they require no a priori linguistic knowl-
edge, whereas linguistically constructed grammars typi-
cally hold a fair amount of specific syntactic knowledge.
Unsupervised approaches treat trees as entirely hidden
structure; many such approaches do not care if the tree
shapes end up being linguistically conventional. But
many other blends are possible.

How are model parameters trained? Reasonably effi-
cient EM training methods are available for training
large numbers of parameters in token-based IBM models
(Brown et al., 1993) as well as tree-based ITGs (Wu,
1995b). Maximum-entropy and minimum error-rate train-
ing methods are also available for tuning relatively small
numbers of parameters in loglinear models used in many
systems including segment-based PBSMT models (Och)
2003)), but their stability is not very reliable. Can better
methods for parameter estimation be developed?
Lexicalization? Are the benefits ultimately worth the cost
of fully lexicalizing ITGs—for example, as in the lexi-
cally parameterized ITGs of |Huang et al|(2005)), |[Zhang
and Gildea (2005), or Zhang and Gildeal (2006), the
maximum-entropy BITG models of Xiong et al| (2006)
and |Xiong et al.|(2009), or the heavily lexicalized ITGs
typically induced by the binarization method of |Zhang



et al.| (2006) or the hierarchical phrase-based translation

method of |Chiang| (2007)?

o Headedness? 1Is performance ultimately significantly im-
proved by marking heads on the rules of an ITG to yield
head ITG models—for example, as in the dependency-
oriented variants of |Alshawi et al.| (1998), |Cherry and
Lin| (2003)), and |Cherry and Lin| (2007)?

e Bias toward input or output language? Bilingual trans-
duction grammars inherently suffer some degree of mis-
match between the grammar of the input versus output
languages. Biasing them toward input grammars parses
the input more accurately, but biasing toward output
grammars as in 'Wu and Wong| (1998) ensures grammati-
cal translations. Toward which direction is it better to be
biased, and in what way?

e Better methods for inducing ITGs? 1TGs can be induced
in many ways. The hierarchical phrase-based translation
method of |Chiang| (2007) is one way to learn one style
of ITGs. Another method is to approximate SDTGs (syn-
chronous CFGs) with ITGs produced via the binarization
algorithm of [Zhang et al|(2006). A large space of other
approaches remain to be explored.

e How can the mismatch between training and testing
conditions be reduced? An overwhelming proportion of
segment-based and tree-based SMT models still bootstrap
training via relatively poor quality token-based IBM
alignments, that bear little resemblance to the models
used by the decoder. Recent work by [Saers and Wu
(2009) and |Saers et al| (2009) begins to address this
by replacing the IBM alignments with EM-trained BITG
alignments right from the start, yielding improved overall
translation accuracy.

Speaking more generally, past work has been lopsidedly
focused on approaches that emphasize search biases. What
other language biases can be exploited? And, of course,
despite our emphasis on the fact that language biases are
more effective than search biases when well fit to the domain,
discovering improved search biases remains as important as
ever.

V. SEMaNTIC SMT: SENSE DISAMBIGUATION

Sense disambiguation uses clues in the input context
to predict the correct meaning of input lexemes that are
ambiguous—thus making or influencing decisions on trans-
lation lexical choice. A large body of work on word sense
disambiguation (WSD) exists, not only in the linguistic tra-
dition, but also, more recently, in extensive empirical and
machine learning oriented evaluations. Yet surprisingly, the
application of semantic modeling to SMT has received little or
no attention. Leveraging such modeling approaches to improve
the adequacy of translation would seem highly desirable in the
face of the types of semantic errors made by today's more n-
gram based, fluency-oriented SMT systems.

Choosing the right lexical translation for an input word or
phrase is essentially the same problem as choosing its sense.
To accomplish this, WSD models make heavy use of the local

and sentence-level context surrounding the input word—unlike
current SMT models. WSD models are complementary to
SMT models in this sense. However, early attempts at using
context-rich approaches from Word Sense Disambiguation
(WSD) methods in standard SMT systems surprisingly did
not yield the expected improvements in translation quality
(Carpuat and Wu, 2005).

Only recently have methods begun to emerge for success-
fully applying WSD models to context-dependent translation
lexical choice, such as |Carpuat and Wu| (2007a)), |(Chan et al.
(2007), and |[Giménez and Marquez (2007). The phrase sense
disambiguation (PSD) model of (Carpuat and Wu| (2007b)
leverages the feature engineering and learning models devel-
oped for standalone WSD, but succeeds where its predecessors
failed by making three key adaptations:

1) The sense disambiguation model must be trained to pre-
dict observable senses that are the direct lexical trans-
lations of the target lexeme being disambiguated. PSD
sense inventories are exactly the phrasal translations
learned in the SMT translation lexicon. In contrast, most
conventional WSD models are instead trained to predict
hidden senses drawn from an artificially constructed
sense inventory. This differs even from previous WSD
approaches like those of |Dagan and Itai| (1994) or [Gale
et al| (1992) that make use of word translations as a
source of WSD labels, but use manually-defined word-
based translation lexicons rather than learned phrasal
translations, and still make a distinction between sense
labels and SMT translation candidates (Brown et al.l
1991).

2) Sense disambiguation must be redefined to move beyond
the particular case of single-token “word” targets, and
instead to gemeralize to multi-token phrase segment
targets. PSD targets are permitted to be phrasal lexemes
composed of smaller lexemes, while standalone WSD
targets are typically defined as single tokens, as in
Senseval tasks (e.g., [Kilgarriff and Rosenzweig| (1999);
Kilgarriff| (2001)); Mihalcea et al.| (2004)).

3) The sense disambiguation model must be fully integrated
into the runtime decoding. Unlike earlier models at-
tempting to utilize single-token word sense disambigua-
tion—e.g., [Carpuat and Wu| (2005)—it is not possible to
represent phrasal sense predictions as input annotations
since they cover overlapping spans in the input sentence.
PSD is fully integrated into the decoding search itself,
as opposed to preprocessing or postprocessing stages.

Clearly, lessons learned from work on syntax for SMT
also apply to semantics. With these three adaptations, PSD
consistently yields gains across multiple Chinese-English test
sets on all eight of the most commonly used automatic
evaluation metrics. Work to better understand and improve
sense disambiguation for SMT is ongoing; see |Carpuat and
'Wu| (2008)) for more recent analysis.



VI. SEmanTIiCc SMT: SEMANTIC ROLES

Aside from WSD, the other major area of lexical seman-
tics is semantic role labeling (SRL). Confusion of semantic
roles causes translation errors that often result in serious
misunderstandings of the essential meaning of the source
utterances—who did what to whom, for whom or what, how,
where, when, and why.

First results have begun to appear for applying shallow
semantic parsing and semantic role labeling models directly to
SMT, in ways that might reduce role confusion errors in the
translation output (Wu and Fung,2009b) by exploiting increas-
ingly sophisticated models for shallow semantic parsing. Such
semantic parsers, which automatically label the predicates
and arguments (roles) of the various semantic frames in
a sentence, are used to automatically identify inconsistent
semantic frame and role mappings between the input source
sentences and their output translations (Wu and Fung, [2009a)).
This approach is supported by the results of [Fung et al.
(2006), which reported that (for the English-Chinese language
pair) approximately 84% of semantic role mappings remained
consistent cross-lingually across sentence translations.

While work on semantic roles for SMT is at a nascent
stage, error analyses suggest that it promises to be one of the
most important directions for addressing the limitations of the
current SMT paradigms.

VII. CoNncLUSION

We have surveyed some central issues in the historical,
current, and future landscape of machine translation research:
a three-dimensional MT model space; a socio-geographical
conceptual disparity hypothesis explaining why language
pairs like Chinese-English present MT with so much difficulty;
the evolution from simple token-based to segment-based to
tree-based SMT; language bias rationales for selecting the
degree of compositional power within the expressiveness hier-
archy of classes of transduction grammars (or synchronous
grammars), inversion transduction grammars, and the ITG
hypothesis; key open questions for syntactic SMT; principles
for successful application of phrase sense disambiguation
models to semantic SMT; and early directions in the use of
semantic role labeling for semantic SMT.

The multitude of specific problems being actively inves-
tigated in machine translation research are far too numerous to
survey in the present short format. The variety may be illus-
trated by a few brief examples. (a) An active area of research
concerns learning without massive parallel corpora; an obvious
limitation of the currently dominant framework for SMT is its
dependence on the availability of parallel texts. This is not a
reasonable assumption for low-resource languages. Also, from
a scientific or cognitive modeling standpoint, children learn
language without the luxury of unlimited parallel text. How
can SMT be learned from small parallel corpora? And how
can SMT be learned from large amounts of monolingual non-
parallel corpora? (b) How can multiple MT architectures be
leveraged? Methods for parallel system combination lever-
age the hypothesis generation ability of different competing

models. Methods for serial system combination use one MT
model to correct the errors of another previous MT model. (c)
How can confidence estimation techniques common in other
pattern recognition applications be used to improve machine
translation?

One important methodological question that requires
closer scrutiny is whether current evaluation metrics are suffi-
ciently sensitive to grammaticality improvements and semantic
role improvements. If not, a vacuum of incentive will impede
research.
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